9,658 research outputs found
New contention resolution schemes for WiMAX
Abstract—The use of Broadband Wireless Access (BWA) technology is increasing due to the use of Internet and multimedia applications with strict requirements of end–to–end delay and jitter, through wireless devices. The IEEE 802.16 standard, which defines the physical (PHY) and the medium access control (MAC) layers, is one of the BWA standards. Its MAC layer is centralized basis, where the Base Station (BS) is responsible for assigning the needed bandwidth for each Subscriber Station (SS), which requests bandwidth competing between all of them. The standard defines a contention resolution process to resolve the potential occurrence of collisions during the requesting process. In this paper, we propose to modify the contention resolution process to improve the network performance, including end–to–end delay and throughput
Decoupling of the superconducting and magnetic (structural) phase transitions in electron-doped BaFe2As2
Study and comparison of over 30 examples of electron doped BaFe2As2 for
transition metal (TM) = Co, Ni, Cu, and (Co/Cu mixtures) have lead to an
understanding that the suppression of the structural/antiferromagnetic phase
transition to low enough temperature in these compounds is a necessary
condition for superconductivity, but not a sufficient one. Whereas the
structural/antiferromagnetic transitions are suppressed by the number of TM
dopant ions (or changes in the c-axis) the superconducting dome exists over a
limited range of values of the number of electrons added by doping (or values
of the {a/c} ratio). By choosing which combination of dopants are used we can
change the relative positions of the upper phase lines and the superconducting
dome, even to the extreme limit of suppressing the upper structural and
magnetic phase transitions without the stabilization of low temperature
superconducting dome
Physical and magnetic properties of Ba(FeRu)As single crystals
Single crystals of Ba(FeRu)As, , have been grown
and characterized by structural, magnetic and transport measurements. These
measurements show that the structural/magnetic phase transition found in pure
BaFeAs at 134 K is suppressed monotonically by Ru doping, but, unlike
doping with TM=Co, Ni, Cu, Rh or Pd, the coupled transition seen in the parent
compound does not detectably split into two separate ones. Superconductivity is
stabilized at low temperatures for and continues through the highest
doping levels we report. The superconducting region is dome like, with maximum
T ( K) found around . A phase diagram of temperature
versus doping, based on electrical transport and magnetization measurements,
has been constructed and compared to those of the
Ba(FeTM)As (TM=Co, Ni, Rh, Pd) series as well as to the
temperature-pressure phase diagram for pure BaFeAs. Suppression of the
structural/magnetic phase transition as well as the appearance of
superconductivity is much more gradual in Ru doping, as compared to Co, Ni, Rh
and Pd doping, and appears to have more in common with BaFeAs tuned
with pressure; by plotting and as a function of changes in unit
cell dimensions, we find that changed in the ratio, rather than changes
in , or V, unify the and phase diagrams for BaFeAs
and Ba(FeRu)As respectively.Comment: 16 pages, 10 figure
- …