6 research outputs found
Effects of salinity and alkalinity on growth and survival of all-male giant freshwater prawn (Macrobrachium rosenbergii De Man, 1879) juveniles
All-male giant freshwater prawns (AMGFPs) have been a popular crop cultivated in the Mekong Delta, Vietnam, due to their proven production efficiency compared to all-female or mixed-sex prawn cultures. However, the crucial water quality factors impacting AMGFP aquaculture efficiency have yet to be elaborately investigated. Two separate experiments were randomly arranged with three replicates to evaluate the effects of salinity or alkalinity on the growth and survival of AMGFP juveniles during the grow-out period. The results show that the prawn survival rate in the salinity range of 0â15â° varied from 66.1 to 74.8ïŒ
and in a salinity range of 0â5â° was relatively low compared to the range of 10-15â°; however, the difference was not significant among salinities after 90 days of culture (p > 0.05). All the prawn growth performance parameters significantly decreased with increasing salinities of 0, 5, 10, and 15â° after 30, 60, and 90 days of culture (p 0.05), and both were significantly higher than those at salinities of 10 and 15â° (p < 0.05) after 90 days of culture. In addition, the survival rate reached 82.5â84.4ïŒ
and did not significantly differ among alkalinities of 80, 100, 120, 140, and 160 mgCaCO3 Lâ1. However, the growth performance parameters and yield of AMGFPs at an alkalinity of 160 mg Lâ1 were significantly higher than those at lower alkalinities (80, 100, 120, and 140 mg CaCO3 Lâ1) after 90 days of culture. Therefore, it is recommended that a salinity range of 0â5â° and alkalinity of 160 mgCaCO3 Lâ1 is optimal for the growth-out culture of AMGFP juveniles
Type 2 Diabetes Mellitus Duration and Obesity alter the Efficacy of Autologously Transplanted Bone Marrow-derived Mesenchymal Stem/Stromal Cells
Human bone marrow-derived mesenchymal stem/stromal cells (BM-MSCs) represent promising stem cell therapy for the treatment of type 2 diabetes mellitus (T2DM), but the results of autologous BM-MSC administration in T2DM patients are contradictory. The purpose of this study was to test the hypothesis that autologous BM-MSC administration in T2DM patient is safe and that the efficacy of the treatment is dependant on the quality of the autologous BM-MSC population and administration routes. T2DM patients were enrolled, randomly assigned (1:1) by a computer-based system into the intravenous and dorsal pancreatic arterial groups. The safety was assessed in all the treated patients, and the efficacy was evaluated based on the absolute changes in the hemoglobin A1c, fasting blood glucose, and C-peptide levels throughout the 12-month follow-up. Our data indicated that autologous BM-MSC administration was well tolerated in 30 T2DM patients. Short-term therapeutic effects were observed in patients with T2DM duration of <10 years and a body mass index <23, which is in line with the phenotypic analysis of the autologous BM-MSC population. T2DM duration directly altered the proliferation rate of BM-MSCs, abrogated the glycolysis and mitochondria respiration of BM-MSCs, and induced the accumulation of mitochondria DNA mutation. Our data suggest that autologous administration of BM-MSCs in the treatment of T2DM should be performed in patients with T2DM duration <10 years and no obesity. Prior to further confirming the effects of T2DM on BM-MSC biology, future work with a larger cohort focusing on patients with different T2DM history is needed to understand the mechanism underlying our observation
Panta Rhei benchmark dataset: socio-hydrological data of paired events of floods and droughts
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management and climate adaptation. However, there is currently a lack of comprehensive, empirical data about the processes, interactions and feedbacks in complex human-water systems leading to flood and drought impacts. Here we present a benchmark dataset containing socio-hydrological data of paired events, i.e., two floods or two droughts that occurred in the same area. The 45 paired events occurred in 42 different study areas and cover a wide range of socio-economic and hydro-climatic conditions. The dataset is unique in covering both floods and droughts, in the number of cases assessed, and in the quantity of socio-hydrological data. The benchmark dataset comprises: 1) detailed review style reports about the events and key processes between the two events of a pair; 2) the key data table containing variables that assess the indicators which characterise management shortcomings, hazard, exposure, vulnerability and impacts of all events; 3) a table of the indicators-of-change that indicate the differences between the first and second event of a pair. The advantages of the dataset are that it enables comparative analyses across all the paired events based on the indicators-of-change and allows for detailed context- and location-specific assessments based on the extensive data and reports of the individual study areas. The dataset can be used by the scientific community for exploratory data analyses e.g. focused on causal links between risk management, changes in hazard, exposure and vulnerability and flood or drought impacts. The data can also be used for the development, calibration and validation of socio-hydrological models. The dataset is available to the public through the GFZ Data Services (Kreibich et al. 2023, link for review: https://dataservices.gfz-potsdam.de/panmetaworks/review/923c14519deb04f83815ce108b48dd2581d57b90ce069bec9c948361028b8c85/).</p
Growth and survival rates of domesticated and non-domesticated breeding stocks of Penaeus monodon Fabricius, 1798 cultured in ponds and tanks
Sourced breeders from domesticated broodstocks have played an essential role in the steady development of shrimp culture in many countries. In the present study, two experiments were performed in Tra Vinh province, Vietnam, to compare the culturing benefits of sourced breeding stocks from domesticated and non-domesticated Penaeus monodon broodstock. The first 90-day experiment was randomly arranged with three repetitions in six earthen ponds (1,500â2,000 m2). Experimental shrimp (PL12) were stocked at a density of 20 ind. mâ2. The second experiment was randomly designed with three repetitions in six composite tanks (6.0 m3). PL15 of experimental shrimp were cultured at a density of 30 ind. mâ2 for 120 days. Grobest pellet feed (40 % protein) was used in both experiments. At experiment termination, the mean weight (26.09 g) and length (15.68 cm) under pond culture, as well as respective values of 15.57 g, and 13.21 cm under tank culture, for D-shrimp were significantly higher than those of W-shrimp (p<0.05). Similarly, the survival rate (84.33 %), FCR (0.98), and yield (3,558 kg haâ1) under pond culture, as well as the survival rate (87.59 %) and yield (470 g mâ3) under tank culture, of D-shrimp were significantly better than those of W-shrimp (p<0.05). These results prove that the grow-out culture of shrimp postlarvae from domesticated broodstocks resulted in superior performance to those from wild broodstocks
Panta Rhei benchmark dataset: socio-hydrological data of paired events of floods and droughts
As the negative impacts of hydrological extremes increase in large parts of the world, a better understanding of the drivers of change in risk and impacts is essential for effective flood and drought risk management and climate adaptation. However, there is a lack of comprehensive, empirical data about the processes, interactions and feedbacks in complex human-water systems leading to flood and drought impacts. To fill this gap, we present an IAHS Panta Rhei benchmark dataset containing socio-hydrological data of paired events, i.e. two floods or two droughts that occurred in the same area (Kreibich et al. 2017, 2019). The contained 45 paired events occurred in 42 different study areas (in three study areas we have data on two paired events), which cover different socioeconomic and hydroclimatic contexts across all continents. The dataset is unique in covering floods and droughts, in the number of cases assessed and in the amount of qualitative and quantitative socio-hydrological data contained. References to the data sources are provided in 2022-002_Kreibich-et-al_Key_data_table.xlsx where possible. Based on templates, we collected detailed, review-style reports describing the event characteristics and processes in the case study areas, as well as various semi-quantitative data, categorised into management, hazard, exposure, vulnerability and impacts. Sources of the data were classified as follows: scientific study (peer-reviewed paper and PhD thesis), report (by governments, administrations, NGOs, research organisations, projects), own analysis by authors, based on a database (e.g. official statistics, monitoring data such as weather, discharge data, etc.), newspaper article, and expert judgement. The campaign to collect the information and data on paired events started at the EGU General Assembly in April 2019 in Vienna and was continued with talks promoting the paired event data collection at various conferences. Communication with the Panta Rhei community and other flood and drought experts identified through snowballing techniques was important. Thus, data on paired events were provided by professionals with excellent local knowledge of the events and risk management practices
Panta Rhei benchmark dataset: socio-hydrological data of paired events of floods and droughts (version 2)
As the negative impacts of hydrological extremes increase in large parts of the world, a better understanding of the drivers of change in risk and impacts is essential for effective flood and drought risk management and climate adaptation. However, there is a lack of comprehensive, empirical data about the processes, interactions and feedbacks in complex human-water systems leading to flood and drought impacts. To fill this gap, we present an IAHS Panta Rhei benchmark dataset containing socio-hydrological data of paired events, i.e. two floods or two droughts that occurred in the same area (Kreibich et al. 2017, 2019). The contained 45 paired events occurred in 42 different study areas (in three study areas we have data on two paired events), which cover different socioeconomic and hydroclimatic contexts across all continents. The dataset is unique in covering floods and droughts, in the number of cases assessed and in the amount of qualitative and quantitative socio-hydrological data contained. References to the data sources are provided in 2023-001_Kreibich-et-al_Key_data_table.xlsx where possible. Based on templates, we collected detailed, review-style reports describing the event characteristics and processes in the case study areas, as well as various semi-quantitative data, categorised into management, hazard, exposure, vulnerability and impacts. Sources of the data were classified as follows: scientific study (peer-reviewed paper and PhD thesis), report (by governments, administrations, NGOs, research organisations, projects), own analysis by authors, based on a database (e.g. official statistics, monitoring data such as weather, discharge data, etc.), newspaper article, and expert judgement. The campaign to collect the information and data on paired events started at the EGU General Assembly in April 2019 in Vienna and was continued with talks promoting the paired event data collection at various conferences. Communication with the Panta Rhei community and other flood and drought experts identified through snowballing techniques was important. Thus, data on paired events were provided by professionals with excellent local knowledge of the events and risk management practices