301 research outputs found

    Outward Influence and Cascade Size Estimation in Billion-scale Networks

    Full text link
    Estimating cascade size and nodes' influence is a fundamental task in social, technological, and biological networks. Yet this task is extremely challenging due to the sheer size and the structural heterogeneity of networks. We investigate a new influence measure, termed outward influence (OI), defined as the (expected) number of nodes that a subset of nodes SS will activate, excluding the nodes in S. Thus, OI equals, the de facto standard measure, influence spread of S minus |S|. OI is not only more informative for nodes with small influence, but also, critical in designing new effective sampling and statistical estimation methods. Based on OI, we propose SIEA/SOIEA, novel methods to estimate influence spread/outward influence at scale and with rigorous theoretical guarantees. The proposed methods are built on two novel components 1) IICP an important sampling method for outward influence, and 2) RSA, a robust mean estimation method that minimize the number of samples through analyzing variance and range of random variables. Compared to the state-of-the art for influence estimation, SIEA is Ω(log4n)\Omega(\log^4 n) times faster in theory and up to several orders of magnitude faster in practice. For the first time, influence of nodes in the networks of billions of edges can be estimated with high accuracy within a few minutes. Our comprehensive experiments on real-world networks also give evidence against the popular practice of using a fixed number, e.g. 10K or 20K, of samples to compute the "ground truth" for influence spread.Comment: 16 pages, SIGMETRICS 201

    Importance Sketching of Influence Dynamics in Billion-scale Networks

    Full text link
    The blooming availability of traces for social, biological, and communication networks opens up unprecedented opportunities in analyzing diffusion processes in networks. However, the sheer sizes of the nowadays networks raise serious challenges in computational efficiency and scalability. In this paper, we propose a new hyper-graph sketching framework for inflence dynamics in networks. The central of our sketching framework, called SKIS, is an efficient importance sampling algorithm that returns only non-singular reverse cascades in the network. Comparing to previously developed sketches like RIS and SKIM, our sketch significantly enhances estimation quality while substantially reducing processing time and memory-footprint. Further, we present general strategies of using SKIS to enhance existing algorithms for influence estimation and influence maximization which are motivated by practical applications like viral marketing. Using SKIS, we design high-quality influence oracle for seed sets with average estimation error up to 10x times smaller than those using RIS and 6x times smaller than SKIM. In addition, our influence maximization using SKIS substantially improves the quality of solutions for greedy algorithms. It achieves up to 10x times speed-up and 4x memory reduction for the fastest RIS-based DSSA algorithm, while maintaining the same theoretical guarantees.Comment: 12 pages, to appear in ICDM 2017 as a regular pape

    Seismic Interpretation of the Nam Con Son Basin and Its Implication for the Tectonic Evolution

    Full text link
    DOI:10.17014/ijog.3.2.127-137The Nam Con Son Basin covering an area of circa 110,000 km2 is characterized by complex tectonic settings of the basin which has not fully been understood. Multiple faults allowed favourable migration passageways for hydrocarbons to go in and out of traps. Despite a large amount of newly acquired seismic and well data there is no significant update on the tectonic evolution and history of the basin development. In this study, the vast amount of seismic and well data were integrated and reinterpreted to define the key structural events in the Nam Con Son Basin. The results show that the basin has undergone two extentional phases. The first N - S extensional phase terminated at around 30 M.a. forming E - W trending grabens which are complicated by multiple half grabens filled by Lower Oligocene sediments. These grabens were reactivated during the second NW - SE extension (Middle Miocene), that resulted from the progressive propagation of NE-SW listric fault from the middle part of the grabens to the margins, and the large scale building up of roll-over structure. Further to the SW, the faults of the second extentional phase turn to NNE-SSW and ultimately N - S in the SW edge of the basin. Most of the fault systems were inactive by Upper Miocene except for the N - S fault system which is still active until recent time

    Elastic transfer and parity dependence of the nucleus-nucleus optical potential

    Get PDF
    Background: A recent coupled-reaction-channel (CRC) study shows that the enhanced oscillation of the elastic 16O + 12C section at backward angles is due mainly to the elastic α transfer or the core exchange. Such a process gives rise to a parity-dependent term in the total elastic S matrix, an indication of the parity dependence of the 16O + 12C optical potential (OP). Purpose: To explicitly determine the core exchange potential (CEP) induced by the symmetric exchange of the two 12C cores in the elastic sup>16O + 12C scattering at Elab = 132 and 300 MeV and explore its parity dependence. Method: S matrix generated by CRC description of the elastic 16O + 12C scattering is used as the input for the inversion calculation to obtain the effective local OP that contains both the Wigner and Majorana terms. Results: The high-precision inversion results show a strong contribution by the complex Majorana term in the total OP of the 16O + 12C system and thus provide for the first time a direct estimation of the parity-dependent CEP. Conclusions: The elastic α transfer or exchange of the two 12C cores in the 16O + 12C system gives rise to a complex parity dependence of the total OP. This should be a general feature of the OP for the light heavy-ion systems that contain two identical cores

    Suppression of the nuclear rainbow in the inelastic nucleus-nucleus scattering

    Full text link
    The nuclear rainbow observed in the elastic α\alpha-nucleus and light heavy-ion scattering is proven to be due to the refraction of the scattering wave by a deep, attractive real optical potential. The nuclear rainbow pattern, established as a broad oscillation of the Airy minima in the elastic cross section, originates from an interference of the refracted far-side scattering amplitudes. It is natural to expect a similar rainbow pattern also in the inelastic scattering of a nucleus-nucleus system that exhibits a pronounced rainbow pattern in the elastic channel. Although some feature of the nuclear rainbow in the inelastic nucleus-nucleus scattering was observed in experiment, the measured inelastic cross sections exhibit much weaker rainbow pattern, where the Airy oscillation is suppressed and smeared out. To investigate this effect, a novel method of the near-far decomposition of the inelastic scattering amplitude is proposed to explicitly reveal the coupled partial-wave contributions to the inelastic cross section. Using the new decomposition method, our coupled channel analysis of the elastic and inelastic 12^{12}C+12^{12}C and 16^{16}O+12^{12}C scattering at the refractive energies shows unambiguously that the suppression of the nuclear rainbow pattern in the inelastic scattering cross section is caused by a destructive interference of the partial waves of different multipoles. However, the inelastic scattering remains strongly refractive in these cases, where the far-side scattering is dominant at medium and large angles like that observed in the elastic scattering.Comment: Dedicated to the memory of Jacques Raynal; to be published in EPJ

    Petrographic Characteristics and Depositional Environment Evolution of Middle Miocene Sediments in the Thien Ung - Mang Cau Structure of Nam Con Son Basin

    Full text link
    This paper introduces the petrographic characteristics and depositional environment of Middle Miocene rocks of the Thien Ung - Mang Cau structure in the central area of Nam Con Son Basin based on the results of analyzing thin sections and structural characteristics of core samples. Middle Miocene sedimentary rocks in the studied area can be divided into three groups: (1) Group of terrigenous rocks comprising greywacke sandstone, arkosic sandstone, lithic-quartz sandstone, greywacke-lithic sandstone, oligomictic siltstone, and bitumenous claystone; (2) Group of carbonate rocks comprising dolomitic limestone and bituminous limestone; (3) Mixed group comprising calcareous sandstone, calcarinate sandstone, arenaceous limestone, calcareous claystone, calcareous silty claystone, dolomitic limestone containing silt, and bitumen. The depositional environment is expressed through petrographic characteristics and structure of the sedimentary rocks in core samples. The greywacke and arkosic sandstones are of medium grain size, poor sorting and roundness, and siliceous cement characterizing the alluvial and estuarine fan environment expressed by massive structure of core samples. The mixed calcareous limestone, arenaceous dolomitic limestone, and calcareous and bituminous clayey siltstone in the core samples are of turbulent flow structure characterizing shallow bay environment with the action of bottom currents. The dolomitic limestones are of relatively homogeneous, of microgranular and fine-granular texture, precipitated in a weakly reducing, semi-closed, and relatively calm bay environment

    One-loop expressions for hllˉγh\rightarrow l\bar{l}\gamma in Higgs extensions of the Standard Model

    Full text link
    A systematic study of one-loop contributions to the decay channels hllˉγh\rightarrow l\bar{l}\gamma with l=νe,μ,τ,e,μl=\nu_{e,\mu, \tau}, e, \mu, performed in Higgs extended versions of the Standard Model, is presented in the 't Hooft-Veltman gauge. Analytic formulas for one-loop form factors are expressed in terms of the logarithm and di-logarithmic functions. As a result, these form factors can be reduced to those relating to the loop-induced decay processes hγγ,Zγh\rightarrow \gamma\gamma, Z\gamma, confirming not only previous results using different approaches but also close relations between the three kinds of the loop-induced Higgs decay rates. For phenomenological study, we focus on the two observables, namely the enhancement factors defined as ratios of the decay rates calculated between the Higgs extended versions and the standard model, and the forward-backward asymmetries of fermions, which can be used to search for Higgs extensions of the SM. We show that direct effects of mixing between neutral Higgs bosons and indirect contributions of charged Higg boson exchanges can be probed at future colliders.Comment: 39 pages, 9 Figures, 11 Tables of dat

    A Categorical Data Analysis on Financial Failures in Vietnam, 2007-2013

    Get PDF
    In this paper, we examined 256 cases of financial failure and fraud occuring during the recent Vietnam’s chaotic years from 2007 to 2013, employing methods of categorical data analysis. Reported results suggest that the rent-seeking approach, or resource-based orientation, alone does not help explain the outcome of a business intention while the association between Orientation and Approach is the best-fit predictor. Rampant financial collapse not only increases the cost of funds but also erodes trust in the economy. Entrepreneurship development and creativity capacity building are necessary to improve socio-economic conditions and the environment. This work also introduces intuitive and cognitive factors to predict ex-ante outcome of a financing scheme

    SNP discovery by high-throughput sequencing in soybean

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the advance of new massively parallel genotyping technologies, quantitative trait loci (QTL) fine mapping and map-based cloning become more achievable in identifying genes for important and complex traits. Development of high-density genetic markers in the QTL regions of specific mapping populations is essential for fine-mapping and map-based cloning of economically important genes. Single nucleotide polymorphisms (SNPs) are the most abundant form of genetic variation existing between any diverse genotypes that are usually used for QTL mapping studies. The massively parallel sequencing technologies (Roche GS/454, Illumina GA/Solexa, and ABI/SOLiD), have been widely applied to identify genome-wide sequence variations. However, it is still remains unclear whether sequence data at a low sequencing depth are enough to detect the variations existing in any QTL regions of interest in a crop genome, and how to prepare sequencing samples for a complex genome such as soybean. Therefore, with the aims of identifying SNP markers in a cost effective way for fine-mapping several QTL regions, and testing the validation rate of the putative SNPs predicted with Solexa short sequence reads at a low sequencing depth, we evaluated a pooled DNA fragment reduced representation library and SNP detection methods applied to short read sequences generated by Solexa high-throughput sequencing technology.</p> <p>Results</p> <p>A total of 39,022 putative SNPs were identified by the Illumina/Solexa sequencing system using a reduced representation DNA library of two parental lines of a mapping population. The validation rates of these putative SNPs predicted with low and high stringency were 72% and 85%, respectively. One hundred sixty four SNP markers resulted from the validation of putative SNPs and have been selectively chosen to target a known QTL, thereby increasing the marker density of the targeted region to one marker per 42 K bp.</p> <p>Conclusions</p> <p>We have demonstrated how to quickly identify large numbers of SNPs for fine mapping of QTL regions by applying massively parallel sequencing combined with genome complexity reduction techniques. This SNP discovery approach is more efficient for targeting multiple QTL regions in a same genetic population, which can be applied to other crops.</p
    corecore