1,746 research outputs found

    An isogeometric analysis for elliptic homogenization problems

    Full text link
    A novel and efficient approach which is based on the framework of isogeometric analysis for elliptic homogenization problems is proposed. These problems possess highly oscillating coefficients leading to extremely high computational expenses while using traditional finite element methods. The isogeometric analysis heterogeneous multiscale method (IGA-HMM) investigated in this paper is regarded as an alternative approach to the standard Finite Element Heterogeneous Multiscale Method (FE-HMM) which is currently an effective framework to solve these problems. The method utilizes non-uniform rational B-splines (NURBS) in both macro and micro levels instead of standard Lagrange basis. Beside the ability to describe exactly the geometry, it tremendously facilitates high-order macroscopic/microscopic discretizations thanks to the flexibility of refinement and degree elevation with an arbitrary continuity level provided by NURBS basis functions. A priori error estimates of the discretization error coming from macro and micro meshes and optimal micro refinement strategies for macro/micro NURBS basis functions of arbitrary orders are derived. Numerical results show the excellent performance of the proposed method

    Isogeometric analysis for functionally graded microplates based on modified couple stress theory

    Get PDF
    Analysis of static bending, free vibration and buckling behaviours of functionally graded microplates is investigated in this study. The main idea is to use the isogeometric analysis in associated with novel four-variable refined plate theory and quasi-3D theory. More importantly, the modified couple stress theory with only one material length scale parameter is employed to effectively capture the size-dependent effects within the microplates. Meanwhile, the quasi-3D theory which is constructed from a novel seventh-order shear deformation refined plate theory with four unknowns is able to consider both shear deformations and thickness stretching effect without requiring shear correction factors. The NURBS-based isogeometric analysis is integrated to exactly describe the geometry and approximately calculate the unknown fields with higher-order derivative and continuity requirements. The convergence and verification show the validity and efficiency of this proposed computational approach in comparison with those existing in the literature. It is further applied to study the static bending, free vibration and buckling responses of rectangular and circular functionally graded microplates with various types of boundary conditions. A number of investigations are also conducted to illustrate the effects of the material length scale, material index, and length-to-thickness ratios on the responses of the microplates.Comment: 57 pages, 14 figures, 18 table

    How Digital Natives Learn and Thrive in the Digital Age: Evidence from an Emerging Economy

    Get PDF
    As a generation of ‘digital natives,’ secondary students who were born from 2002 to 2010 have various approaches to acquiring digital knowledge. Digital literacy and resilience are crucial for them to navigate the digital world as much as the real world; however, these remain under-researched subjects, especially in developing countries. In Vietnam, the education system has put considerable effort into teaching students these skills to promote quality education as part of the United Nations-defined Sustainable Development Goal 4 (SDG4). This issue has proven especially salient amid the COVID−19 pandemic lockdowns, which had obliged most schools to switch to online forms of teaching. This study, which utilizes a dataset of 1061 Vietnamese students taken from the United Nations Educational, Scientific, and Cultural Organization (UNESCO)’s “Digital Kids Asia Pacific (DKAP)” project, employs Bayesian statistics to explore the relationship between the students’ background and their digital abilities. Results show that economic status and parents’ level of education are positively correlated with digital literacy. Students from urban schools have only a slightly higher level of digital literacy than their rural counterparts, suggesting that school location may not be a defining explanatory element in the variation of digital literacy and resilience among Vietnamese students. Students’ digital literacy and, especially resilience, also have associations with their gender. Moreover, as students are digitally literate, they are more likely to be digitally resilient. Following SDG4, i.e., Quality Education, it is advisable for schools, and especially parents, to seriously invest in creating a safe, educational environment to enhance digital literacy among students

    Cyberattack detection in mobile cloud computing: A deep learning approach

    Full text link
    © 2018 IEEE. With the rapid growth of mobile applications and cloud computing, mobile cloud computing has attracted great interest from both academia and industry. However, mobile cloud applications are facing security issues such as data integrity, users' confidentiality, and service availability. A preventive approach to such problems is to detect and isolate cyber threats before they can cause serious impacts to the mobile cloud computing system. In this paper, we propose a novel framework that leverages a deep learning approach to detect cyberattacks in mobile cloud environment. Through experimental results, we show that our proposed framework not only recognizes diverse cyberattacks, but also achieves a high accuracy (up to 97.11%) in detecting the attacks. Furthermore, we present the comparisons with current machine learning-based approaches to demonstrate the effectiveness of our proposed solution

    Retrieval of material properties of monolayer transition-metal dichalcogenides from magnetoexciton energy spectra

    Full text link
    Reduced exciton mass, polarizability, and dielectric constant of the surrounding medium are essential properties for semiconduction materials, and they can be extracted recently from the magnetoexciton energies. However, the acceptable accuracy of the previously suggested method requires very high magnetic intensity. Therefore, in the present paper, we propose an alternative method of extracting these material properties from recently available experimental magnetoexciton s-state energies in monolayer transition-metal dichalcogenides (TMDCs). The method is based on the high sensitivity of exciton energies to the material parameters in the Rytova-Keldysh model. It allows us to vary the considered material parameters to get the best fit of the theoretical calculation to the experimental exciton energies for the 1s1s, 2s2s, and 3s3s states. This procedure gives values of the exciton reduced mass and 2D polarizability. Then, the experimental magnetoexciton spectra compared to the theoretical calculation gives also the average dielectric constant. Concrete applications are presented only for monolayers WSe2_2 and WS2_2 from the recently available experimental data. However, the presented approach is universal and can be applied to other monolayer TMDCs. The mentioned fitting procedure requires a fast and effective method of solving the Schr\"{o}dinger of an exciton in monolayer TMDCs with a magnetic field. Therefore, we also develop such a method in this study for highly accurate magnetoexciton energies.Comment: 8 pages, 4 figures, 4 table

    Effects of foundation mass on dynamic responses of beams subjected to moving oscillators

    Get PDF
    This paper aims at the effects of foundation mass on the dynamic responses of beams subjected to moving oscillators. To achieve this aim, experiments were performed for a beam resting on the foundation considering effects of the foundation model including linear elastic spring, shear layer, viscous damping. In addition, special effects of mass density of foundation during vibration were established to obtain the characteristic parameter of the influence of foundation mass based on natural circular frequency of the structure system determined from FFT plots of the time history of acceleration data. Furthermore, the experimental parameters were used to analyze the influence of the foundation mass on the dynamic response of the beam subjected to moving oscillator. Comparisons between experimental and simulated results showed that the foundation mass showed significant effects on the dynamic characteristic response of the beam system. It increased the general vibrating mass of the structure system. Hence, it decreased of the natural frequency of the structural system and caused a significant increase on the dynamic response of the beam when compared with the case without considering the foundation mass. Finally, the relationships between the foundation properties and the parameters of foundation mass were derived and discussed

    The influence of foundation mass on dynamic response of track-vehicle interaction

    Get PDF
    The influence of foundation mass on the dynamic response of track-vehicle interaction is studied in this paper. The moving vehicle is modeled as a two-axle mass-spring-damper four-degrees-of-freedom system. A new dynamic foundation model, called "Dynamic foundation model" including linear elastic spring, shear layer, viscous damping and foundation mass parameter, is used to analyze the dynamic response of the track-vehicle interaction. The railway track on the new dynamic foundation model subjected to a moving vehicle is regarded as an integrated system. By means of the finite element method and dynamic balance principle, the governing equation of motion for railway track-vehicle-foundation interaction is derived and solved by the step-by-step integration method. The accuracy of the algorithm is verified by comparing the numerical results with the other numerical results in the literature. The influence of foundation mass parameter on the dynamic response of railway track-vehicle interaction is investigated. The numerical results show that with the new dynamic foundation model the foundation mass effects more significantly on the dynamic response of track-vehicle interaction. The study shows that the new dynamic foundation model describes the true behavior of soil in the analysis of dynamic response of structures on the foundation
    corecore