40,578 research outputs found

    Applied analytical combustion/emissions research at the NASA Lewis Research Center

    Get PDF
    Emissions of pollutants from future commercial transports are a significant concern. As a result, the Lewis Research Center (LeRC) is investigating various low emission combustor technologies. As part of this effort, a combustor analysis code development program was pursued to guide the combustor design process, to identify concepts having the greatest promise, and to optimize them at the lowest cost in the minimum time

    Pilot Human Factors in Stall/Spin Accidents of Supersonic Fighter Aircraft

    Get PDF
    A study has been made of pilot human factors related to stall/spin accidents of supersonic fighter aircraft. The military specifications for flight at high angles of attack are examined. Several pilot human factors problems related to stall/spin are discussed. These problems include (1) unsatisfactory nonvisual warning cues; (2) the inability of the pilot to quickly determine if the aircraft is spinning out of control, or to recognize the type of spin; (3) the inability of the pilot to decide on and implement the correct spin recovery technique; (4) the inability of the pilot to move, caused by high angular rotation; and (5) the tendency of pilots to wait too long in deciding to abandon the irrecoverable aircraft. Psycho-physiological phenomena influencing pilot's behavior in stall/spin situations include (1) channelization of sensory inputs, (2) limitations in precisely controlling several muscular inputs, (3) inaccurate judgment of elapsed time, and (4) disorientation of vestibulo-ocular inputs. Results are given of pilot responses to all these problems in the F14A, F16/AB, and F/A-18A aircraft. The use of departure spin resistance and automatic spin prevention systems incorporated on recent supersonic fighters are discussed. These systems should help to improve the stall/spin accident record with some compromise in maneuverability

    Wearable Sensor Data Based Human Activity Recognition using Machine Learning: A new approach

    Get PDF
    Recent years have witnessed the rapid development of human activity recognition (HAR) based on wearable sensor data. One can find many practical applications in this area, especially in the field of health care. Many machine learning algorithms such as Decision Trees, Support Vector Machine, Naive Bayes, K-Nearest Neighbor, and Multilayer Perceptron are successfully used in HAR. Although these methods are fast and easy for implementation, they still have some limitations due to poor performance in a number of situations. In this paper, we propose a novel method based on the ensemble learning to boost the performance of these machine learning methods for HAR

    FRENCH QUALITY AND ECO-LABELING SCHEMES: DO THEY ALSO BENEFIT THE ENVIRONMENT?

    Get PDF
    The environmental effects of various 'quality' and 'eco-labeling' programs in the Midi-Pyrenees region of the south of France are analyzed, using factor analysis, analysis of variance, and qualitative analysis. Implications for agri-environmental policies on both sides of the Atlantic are discussed.Environmental Economics and Policy,

    Antagonistic and cooperative AGO2-PUM interactions in regulating mRNAs.

    Get PDF
    Approximately 1500 RNA-binding proteins (RBPs) profoundly impact mammalian cellular function by controlling distinct sets of transcripts, often using sequence-specific binding to 3' untranslated regions (UTRs) to regulate mRNA stability and translation. Aside from their individual effects, higher-order combinatorial interactions between RBPs on specific mRNAs have been proposed to underpin the regulatory network. To assess the extent of such co-regulatory control, we took a global experimental approach followed by targeted validation to examine interactions between two well-characterized and highly conserved RBPs, Argonaute2 (AGO2) and Pumilio (PUM1 and PUM2). Transcriptome-wide changes in AGO2-mRNA binding upon PUM knockdown were quantified by CLIP-seq, and the presence of PUM binding on the same 3'UTR corresponded with cooperative and antagonistic effects on AGO2 occupancy. In addition, PUM binding sites that overlap with AGO2 showed differential, weakened binding profiles upon abrogation of AGO2 association, indicative of cooperative interactions. In luciferase reporter validation of candidate 3'UTR sites where AGO2 and PUM colocalized, three sites were identified to host antagonistic interactions, where PUM counteracts miRNA-guided repression. Interestingly, the binding sites for the two proteins are too far for potential antagonism due to steric hindrance, suggesting an alternate mechanism. Our data experimentally confirms the combinatorial regulatory model and indicates that the mostly repressive PUM proteins can change their behavior in a context-dependent manner. Overall, the approach underscores the importance of further elucidation of complex interactions between RBPs and their transcriptome-wide extent

    ‘A double-edged sword. This is powerful but it could be used destructively’: Perspectives of early career education researchers on learning analytics

    Get PDF
    Learning analytics has been increasingly outlined as a powerful tool for measuring, analysing, and predicting learning experiences and behaviours. The rising use of learning analytics means that many educational researchers now require new ranges of technical analytical skills to contribute to an increasingly data-heavy field. However, it has been argued that educational data scientists are a ‘scarce breed’ (Buckingham Shum et al., 2013) and that more resources are needed to support the next generation of early career researchers in the education field. At the same time, little is known about how early career education researchers feel towards learning analytics and whether it is important to their current and future research practices. Using a thematic analysis of a participatory learning analytics workshop discussions with 25 early career education researchers, we outline in this article their ambitions, challenges and anxieties towards learning analytics. In doing so, we have provided a roadmap for how the learning analytics field might evolve and practical implications for supporting early career researchers’ development

    Coherent coupling between surface plasmons and excitons in semiconductor nanocrystals

    Full text link
    We present an experimental demonstration of strong coupling between a surface plasmon propagating on a planar silver substrate, and the lowest excited state of CdSe nanocrystals. Variable-angle spectroscopic ellipsometry measurements demonstrated the formation of plasmon-exciton mixed states, characterized by a Rabi splitting of \sim 82 meV at room temperature. Such a coherent interaction has the potential for the development of plasmonic non-linear devices, and furthermore, this system is akin to those studied in cavity quantum electrodynamics, thus offering the possibility to study the regime of strong light-matter coupling in semiconductor nanocrystals at easily accessible experimental conditions.Comment: 12 pages, 4 figure

    Randomized Extended Kaczmarz for Solving Least-Squares

    Full text link
    We present a randomized iterative algorithm that exponentially converges in expectation to the minimum Euclidean norm least squares solution of a given linear system of equations. The expected number of arithmetic operations required to obtain an estimate of given accuracy is proportional to the square condition number of the system multiplied by the number of non-zeros entries of the input matrix. The proposed algorithm is an extension of the randomized Kaczmarz method that was analyzed by Strohmer and Vershynin.Comment: 19 Pages, 5 figures; code is available at https://github.com/zouzias/RE
    corecore