101 research outputs found
Capturing natural-colour 3D models of insects for species discovery
Collections of biological specimens are fundamental to scientific
understanding and characterization of natural diversity. This paper presents a
system for liberating useful information from physical collections by bringing
specimens into the digital domain so they can be more readily shared, analyzed,
annotated and compared. It focuses on insects and is strongly motivated by the
desire to accelerate and augment current practices in insect taxonomy which
predominantly use text, 2D diagrams and images to describe and characterize
species. While these traditional kinds of descriptions are informative and
useful, they cannot cover insect specimens "from all angles" and precious
specimens are still exchanged between researchers and collections for this
reason. Furthermore, insects can be complex in structure and pose many
challenges to computer vision systems. We present a new prototype for a
practical, cost-effective system of off-the-shelf components to acquire
natural-colour 3D models of insects from around 3mm to 30mm in length. Colour
images are captured from different angles and focal depths using a digital
single lens reflex (DSLR) camera rig and two-axis turntable. These 2D images
are processed into 3D reconstructions using software based on a visual hull
algorithm. The resulting models are compact (around 10 megabytes), afford
excellent optical resolution, and can be readily embedded into documents and
web pages, as well as viewed on mobile devices. The system is portable, safe,
relatively affordable, and complements the sort of volumetric data that can be
acquired by computed tomography. This system provides a new way to augment the
description and documentation of insect species holotypes, reducing the need to
handle or ship specimens. It opens up new opportunities to collect data for
research, education, art, entertainment, biodiversity assessment and
biosecurity control.Comment: 24 pages, 17 figures, PLOS ONE journa
First-principles study on the structural and electronic properties of single-layer MoSi2N4
Motivated by the successful exfoliation of a novel two-dimensional MoSi2N4 materials, in this work, we investigate the structural and electronic properties of a novel single-layer MoSi2N4 and the effect of strain engineering by using the first-principles calculations based on the density functional theory. The single-layer MoSi2N4 has a hexagonal structure with a space group of P6m1, which is dynamically stable. The material exhibits a semiconducting characteristic with an indirect band gap of 1.80/2.36 eV calculated by using the PBE/HSE functional. The conduction band minimum at the K point of the material originates from the Mo atom, while its valence band maximum at the G point is contributed by the hybridization between the Mo and N atoms. The electronic properties of the single-layer MoSi2N4 can be modulated with strain engineering, giving rise to a transition from a semiconductor to a metal and tending to a change in the band gap. Our results demonstrate that the single-layer MoSi2N4 is a promising candidate for electronic and optoelectronic applications
3D Scanning System for Automatic High-Resolution Plant Phenotyping
Thin leaves, fine stems, self-occlusion, non-rigid and slowly changing
structures make plants difficult for three-dimensional (3D) scanning and
reconstruction -- two critical steps in automated visual phenotyping. Many
current solutions such as laser scanning, structured light, and multiview
stereo can struggle to acquire usable 3D models because of limitations in
scanning resolution and calibration accuracy. In response, we have developed a
fast, low-cost, 3D scanning platform to image plants on a rotating stage with
two tilting DSLR cameras centred on the plant. This uses new methods of camera
calibration and background removal to achieve high-accuracy 3D reconstruction.
We assessed the system's accuracy using a 3D visual hull reconstruction
algorithm applied on 2 plastic models of dicotyledonous plants, 2 sorghum
plants and 2 wheat plants across different sets of tilt angles. Scan times
ranged from 3 minutes (to capture 72 images using 2 tilt angles), to 30 minutes
(to capture 360 images using 10 tilt angles). The leaf lengths, widths, areas
and perimeters of the plastic models were measured manually and compared to
measurements from the scanning system: results were within 3-4% of each other.
The 3D reconstructions obtained with the scanning system show excellent
geometric agreement with all six plant specimens, even plants with thin leaves
and fine stems.Comment: 8 papes, DICTA 201
Magneto-transport properties of monolayer borophene in perpendicular magnetic field: influence of electron-phonon interaction
The magneto-transport properties of a borophene monolayer in a perpendicular magnetic field B are studied via calculating the conductivity tensor and resistance under electron-optical phonon interaction by using the linear response theory. Numerical results are obtained and discussed for some specific parameters. The magnetic field-dependent longitudinal conductivity shows the magneto-phonon resonance effect that describes the transition of electrons between Landau levels by absorbing/emitting an optical phonon. The Hall conductivity increases first and then decreases with the magnetic field strength. Also, the longitudinal resistance increases significantly with increasing temperature, which shows the metal behaviour of the material. Practically, the observed magneto-phonon resonance can be applied to experimentally determine some material parameters, such as the distance between Landau levels and the optical phonon energy
Randomized controlled trial of artesunate or artemether in Vietnamese adults with severe falciparum malaria
<p>Abstract</p> <p>Background</p> <p>Both artemether and artesunate have been shown to be superior to quinine for the treatment of severe falciparum malaria in Southeast Asian adults, although the magnitude of the superiority has been greater for artesunate than artemether. These two artemisinin derivatives had not been compared in a randomized trial.</p> <p>Methods</p> <p>A randomized double blind trial in 370 adults with severe falciparum malaria; 186 received intramuscular artesunate (2.4 mg/kg immediately followed by 1.2 mg/kg at 12 hours then 24 hours then daily) and 184 received intramuscular artemether (3.6 mg per kilogram immediately followed by 1.8 mg per kilogram daily) was conducted in Viet Nam. Both drugs were given for a minimum of 72 hours.</p> <p>Results</p> <p>There were 13 deaths in the artesunate group (7 percent) and 24 in the artemether group (13 percent); P = 0.052; relative risk of death in the patients given artesunate, 0.54; (95 percent confidence interval 0.28-1.02). Parasitaemia declined more rapidly in the artesunate group. Both drugs were very well tolerated.</p> <p>Conclusions</p> <p>Intramuscular artesunate may be superior to intramuscular artemether for the treatment of severe malaria in adults.</p
Combination Antifungal Therapy for Cryptococcal Meningitis
Background
Combination antifungal therapy (amphotericin B deoxycholate and flucytosine) is the recommended treatment for cryptococcal meningitis but has not been shown to reduce mortality, as compared with amphotericin B alone. We performed a randomized, controlled trial to determine whether combining flucytosine or high-dose fluconazole with high-dose amphotericin B improved survival at 14 and 70 days.
Methods
We conducted a randomized, three-group, open-label trial of induction therapy for cryptococcal meningitis in patients with human immunodeficiency virus infection. All patients received amphotericin B at a dose of 1 mg per kilogram of body weight per day; patients in group 1 were treated for 4 weeks, and those in groups 2 and 3 for 2 weeks. Patients in group 2 concurrently received flucytosine at a dose of 100 mg per kilogram per day for 2 weeks, and those in group 3 concurrently received fluconazole at a dose of 400 mg twice daily for 2 weeks.
Results
A total of 299 patients were enrolled. Fewer deaths occurred by days 14 and 70 among patients receiving amphotericin B and flucytosine than among those receiving amphotericin B alone (15 vs. 25 deaths by day 14; hazard ratio, 0.57; 95% confidence interval [CI], 0.30 to 1.08; unadjusted P=0.08; and 30 vs. 44 deaths by day 70; hazard ratio, 0.61; 95% CI, 0.39 to 0.97; unadjusted P=0.04). Combination therapy with fluconazole had no significant effect on survival, as compared with monotherapy (hazard ratio for death by 14 days, 0.78; 95% CI, 0.44 to 1.41; P=0.42; hazard ratio for death by 70 days, 0.71; 95% CI, 0.45 to 1.11; P=0.13). Amphotericin B plus flucytosine was associated with significantly increased rates of yeast clearance from cerebrospinal fluid (−0.42 log10 colony-forming units [CFU] per milliliter per day vs. −0.31 and −0.32 log10 CFU per milliliter per day in groups 1 and 3, respectively; P<0.001 for both comparisons). Rates of adverse events were similar in all groups, although neutropenia was more frequent in patients receiving a combination therapy.
Conclusions
Amphotericin B plus flucytosine, as compared with amphotericin B alone, is associated with improved survival among patients with cryptococcal meningitis. A survival benefit of amphotericin B plus fluconazole was not found
- …