2,564 research outputs found

    Editor’s Highlight: Modeling Compound-Induced Fibrogenesis In Vitro Using Three-Dimensional Bioprinted Human Liver Tissues

    Get PDF
    Compound-induced liver injury leading to fibrosis remains a challenge for the development of an Adverse Outcome Pathway useful for human risk assessment. Latency to detection and lack of early, systematically detectable biomarkers make it difficult to characterize the dynamic and complex intercellular interactions that occur during progressive liver injury. Here, we demonstrate the utility of bioprinted tissue constructs comprising primary hepatocytes, hepatic stellate cells, and endothelial cells to model methotrexate- and thioacetamide-induced liver injury leading to fibrosis. Repeated, low-concentration exposure to these compounds enabled the detection and differentiation of multiple modes of liver injury, including hepatocellular damage, and progressive fibrogenesis characterized by the deposition and accumulation of fibrillar collagens in patterns analogous to those described in clinical samples obtained from patients with fibrotic liver injury. Transient cytokine production and upregulation of fibrosis-associated genes ACTA2 and COL1A1 mimics hallmark features of a classic wound-healing response. A surge in proinflammatory cytokines (eg, IL-8, IL-1β) during the early culture time period is followed by concentration- and treatment-dependent alterations in immunomodulatory and chemotactic cytokines such as IL-13, IL-6, and MCP-1. These combined data provide strong proof-of-concept that 3D bioprinted liver tissues can recapitulate drug-, chemical-, and TGF-β1-induced fibrogenesis at the cellular, molecular, and histological levels and underscore the value of the model for further exploration of compound-specific fibrogenic responses. This novel system will enable a more comprehensive characterization of key attributes unique to fibrogenic agents during the onset and progression of liver injury as well as mechanistic insights, thus improving compound risk assessment

    Blood and islet phenotypes indicate immunological heterogeneity in type 1 diabetes

    Get PDF
    This is an author-created, uncopyedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association (ADA), publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version is available in Diabetes in print and online at http://diabetes.diabetesjournals.orgThe erratum to this article is available in ORE at http://hdl.handle.net/10871/40335Studies in type 1 diabetes indicate potential disease heterogeneity, notably in the rate of β-cell loss, responsiveness to immunotherapies, and, in limited studies, islet pathology. We sought evidence for different immunological phenotypes using two approaches. First, we defined blood autoimmune response phenotypes by combinatorial, multiparameter analysis of autoantibodies and autoreactive T-cell responses in 33 children/adolescents with newly diagnosed diabetes. Multidimensional cluster analysis showed two equal-sized patient agglomerations characterized by proinflammatory (interferon-γ-positive, multiautoantibody-positive) and partially regulated (interleukin-10-positive, pauci-autoantibody-positive) responses. Multiautoantibody-positive nondiabetic siblings at high risk of disease progression showed similar clustering. Additionally, pancreas samples obtained post mortem from a separate cohort of 21 children/adolescents with recently diagnosed type 1 diabetes were examined immunohistologically. This revealed two distinct types of insulitic lesions distinguishable by the degree of cellular infiltrate and presence of B cells that we termed "hyper-immune CD20Hi" and "pauci-immune CD20Lo." Of note, subjects had only one infiltration phenotype and were partitioned by this into two equal-sized groups that differed significantly by age at diagnosis, with hyper-immune CD20Hi subjects being 5 years younger. These data indicate potentially related islet and blood autoimmune response phenotypes that coincide with and precede disease. We conclude that different immunopathological processes (endotypes) may underlie type 1 diabetes, carrying important implications for treatment and prevention strategies.JDRFNational Institute for Health Research (NIHR) Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College LondonEuropean Union (EU FP7) award - Persistent Virus Infection in Diabetes Network Study Group (PEVNET)EU FP7 Large-Scale Focused Collaborative Research Project on Natural Immunomodulators as Novel Immunotherapies for Type 1 Diabetes (NAIMIT)EU FP7 Large-Scale Focused Collaborative Research Project on β-cell preservation through antigen-specific immunotherapy in Type 1 Diabetes: Enhanced Epidermal Antigen Delivery Systems (EE-ASI)National Institutes of Health (NIH)National Institute of Diabetes and Digestive and Kidney DiseasesNational Institute of Allergy and Infectious DiseasesEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Center for Research ResourcesGeneral Clinical Research CenterAmerican Diabetes Association (ADA

    Search for supersymmetry in events with b-quark jets and missing transverse energy in pp collisions at 7 TeV

    Get PDF
    Results are presented from a search for physics beyond the standard model based on events with large missing transverse energy, at least three jets, and at least one, two, or three b-quark jets. The study is performed using a sample of proton-proton collision data collected at sqrt(s) = 7 TeV with the CMS detector at the LHC in 2011. The integrated luminosity of the sample is 4.98 inverse femtobarns. The observed number of events is found to be consistent with the standard model expectation, which is evaluated using control samples in the data. The results are used to constrain cross sections for the production of supersymmetric particles decaying to b-quark-enriched final states in the context of simplified model spectra.Comment: Submitted to Physical Review

    FRAX (R): Prediction of Major Osteoporotic Fractures in Women from the General Population: The OPUS Study

    Get PDF
    Purposes: The aim of this study was to analyse how well FRAXH predicts the risk of major osteoporotic and vertebral fractures over 6 years in postmenopausal women from general population. Patients and methods: The OPUS study was conducted in European women aged above 55 years, recruited in 5 centers from random population samples and followed over 6 years. The population for this study consisted of 1748 women (mean age 74.2 years) with information on incident fractures. 742 (43.1%) had a prevalent fracture; 769 (44%) and 155 (8.9%) of them received an antiosteoporotic treatment before and during the study respectively. We compared FRAXH performance with and without bone mineral density (BMD) using receiver operator characteristic (ROC) c-statistical analysis with ORs and areas under receiver operating characteristics curves (AUCs) and net reclassification improvement (NRI). Results: 85 (4.9%) patients had incident major fractures over 6 years. FRAXH with and without BMD predicted these fractures with an AUC of 0.66 and 0.62 respectively. The AUC were 0.60, 0.66, 0.69 for history of low trauma fracture alone, age and femoral neck (FN) BMD and combination of the 3 clinical risk factors, respectively. FRAXH with and without BMD predicted incident radiographic vertebral fracture (n = 65) with an AUC of 0.67 and 0.65 respectively. NRI analysis showed a significant improvement in risk assignment when BMD is added to FRAXH. Conclusions: This study shows that FRAXH with BMD and to a lesser extent also without FN BMD predict major osteoporotic and vertebral fractures in the general population

    Ontogeny of Toll-Like and NOD-Like Receptor-Mediated Innate Immune Responses in Papua New Guinean Infants

    Get PDF
    Studies addressing the ontogeny of the innate immune system in early life have reported mainly on Toll-like receptor (TLR) responses in infants living in high-income countries, with little or even no information on other pattern recognition receptors or on early life innate immune responses in children living under very different environmental conditions in less-developed parts of the world. In this study, we describe whole blood innate immune responses to both Toll-like and nucleotide-binding oligomerization domain (NOD)-like receptor agonists including the widely used vaccine adjuvant ‘alum’ in a group of Papua New Guinean infants aged 1–3 (n = 18), 4–6 (n = 18), 7–12 (n = 21) and 13–18 (n = 10) months old. Depending on the ligands and cytokines studied, different age-related patterns were found: alum-induced IL-1β and CXCL8 responses were found to significantly decline with increasing age; inflammatory (IL-6, IL-1β, IFN-γ) responses to TLR2 and TLR3 agonists increased; and IL-10 responses remained constant or increased during infancy, while TNF-α responses either declined or remained the same. We report for the first time that whole blood innate immune responses to the vaccine adjuvant alum decrease with age in infancy; a finding that may imply that the adjuvant effect of alum in pediatric vaccines could be age-related. Our findings further suggest that patterns of innate immune development may vary between geographically diverse populations, which in line with the ‘hygiene hypothesis’ particularly involves persistence of innate IL-10 responses in populations experiencing higher infectious pressure

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Chromosome-wide DNA methylation analysis predicts human tissue-specific X inactivation

    Get PDF
    X-chromosome inactivation (XCI) results in the differential marking of the active and inactive X with epigenetic modifications including DNA methylation. Consistent with the previous studies showing that CpG island-containing promoters of genes subject to XCI are approximately 50% methylated in females and unmethylated in males while genes which escape XCI are unmethylated in both sexes; our chromosome-wide (Methylated DNA ImmunoPrecipitation) and promoter-targeted methylation analyses (Illumina Infinium HumanMethylation27 array) showed the largest methylation difference (D = 0.12, p < 2.2 E−16) between male and female blood at X-linked CpG islands promoters. We used the methylation differences between males and females to predict XCI statuses in blood and found that 81% had the same XCI status as previously determined using expression data. Most genes (83%) showed the same XCI status across tissues (blood, fetal: muscle, kidney and nerual); however, the methylation of a subset of genes predicted different XCI statuses in different tissues. Using previously published expression data the effect of transcription on gene-body methylation was investigated and while X-linked introns of highly expressed genes were more methylated than the introns of lowly expressed genes, exonic methylation did not differ based on expression level. We conclude that the XCI status predicted using methylation of X-linked promoters with CpG islands was usually the same as determined by expression analysis and that 12% of X-linked genes examined show tissue-specific XCI whereby a gene has a different XCI status in at least one of the four tissues examined
    corecore