22 research outputs found
Gaps in the usage and reporting of multiple imputation for incomplete data: findings from a scoping review of observational studies addressing causal questions
Background: Missing data are common in observational studies and often occur in several of the variables required when estimating a causal effect, i.e. the exposure, outcome and/or variables used to control for confounding. Analyses involving multiple incomplete variables are not as straightforward as analyses with a single incomplete variable. For example, in the context of multivariable missingness, the standard missing data assumptions (“missing completely at random”, “missing at random” [MAR], “missing not at random”) are difficult to interpret and assess. It is not clear how the complexities that arise due to multivariable missingness are being addressed in practice. The aim of this study was to review how missing data are managed and reported in observational studies that use multiple imputation (MI) for causal effect estimation, with a particular focus on missing data summaries, missing data assumptions, primary and sensitivity analyses, and MI implementation. Methods: We searched five top general epidemiology journals for observational studies that aimed to answer a causal research question and used MI, published between January 2019 and December 2021. Article screening and data extraction were performed systematically. Results: Of the 130 studies included in this review, 108 (83%) derived an analysis sample by excluding individuals with missing data in specific variables (e.g., outcome) and 114 (88%) had multivariable missingness within the analysis sample. Forty-four (34%) studies provided a statement about missing data assumptions, 35 of which stated the MAR assumption, but only 11/44 (25%) studies provided a justification for these assumptions. The number of imputations, MI method and MI software were generally well-reported (71%, 75% and 88% of studies, respectively), while aspects of the imputation model specification were not clear for more than half of the studies. A secondary analysis that used a different approach to handle the missing data was conducted in 69/130 (53%) studies. Of these 69 studies, 68 (99%) lacked a clear justification for the secondary analysis. Conclusion: Effort is needed to clarify the rationale for and improve the reporting of MI for estimation of causal effects from observational data. We encourage greater transparency in making and reporting analytical decisions related to missing data
The effectiveness of the 13-valent pneumococcal conjugate vaccine against hypoxic pneumonia in children in Lao People's Democratic Republic: An observational hospital-based test-negative study
Background: Pneumococcal pneumonia is a leading cause of childhood mortality. Pneumococcal conjugate vaccines (PCVs) have been shown to reduce hypoxic pneumonia in children. However, there are no studies from Asia examining the effectiveness of PCVs on hypoxic pneumonia. We describe a novel approach to determine the effectiveness of the 13-valent PCV (PCV13) against hypoxia in children admitted with pneumonia in the Lao People's Democratic Republic. Methods: A prospective hospital-based, test-negative observational study of children aged up to 59 months admitted with pneumonia to a single tertiary hospital in Vientiane was undertaken over 54 months. Pneumonia was defined using the 2013 WHO definition. Hypoxia was defined as oxygen saturation <90% in room air or requiring oxygen supplementation during hospitalisation. Test-negative cases and controls were children with hypoxic and non-hypoxic pneumonia, respectively. PCV13 status was determined by written record. Vaccine effectiveness was calculated using logistic regression. Propensity score and multiple imputation analyses were used to handle confounding and missing data. Findings: There were 826 children admitted with pneumonia, 285 had hypoxic pneumonia and 377 were PCV13-vaccinated. The unadjusted, propensity-score adjusted and multiple-imputation adjusted estimates of vaccine effectiveness against hypoxic pneumonia were 23% (95% confidence interval: -9, 46%; p=0•14); 37% (6, 57%; p=0•02) and 35% (7, 55%; p=0•02) respectively. Interpretation: PCV13 is effective against hypoxic pneumonia in Asia, and should be prioritised for inclusion in national immunisation programs. This single hospital-based, test-negative approach can be used to assess vaccine effectiveness in other similar settings. Funding: Funded by the Bill & Melinda Gates Foundation
Factors associated with pneumococcal carriage and density in children and adults in Fiji, using four cross-sectional surveys.
This study describes predictors of pneumococcal nasopharyngeal carriage and density in Fiji. We used data from four annual (2012-2015) cross-sectional surveys, pre- and post-introduction of ten-valent pneumococcal conjugate vaccine (PCV10) in October 2012. Infants (5-8 weeks), toddlers (12-23 months), children (2-6 years), and their caregivers participated. Pneumococci were detected and quantified using lytA qPCR, with molecular serotyping by microarray. Logistic and quantile regression were used to determine predictors of pneumococcal carriage and density, respectively. There were 8,109 participants. Pneumococcal carriage was negatively associated with years post-PCV10 introduction (global P<0.001), and positively associated with indigenous iTaukei ethnicity (aOR 2.74 [95% CI 2.17-3.45] P<0.001); young age (infant, toddler, and child compared with caregiver participant groups) (global P<0.001); urban residence (aOR 1.45 [95% CI 1.30-2.57] P<0.001); living with ≥2 children <5 years of age (aOR 1.42 [95% CI 1.27-1.59] P<0.001); low family income (aOR 1.44 [95% CI 1.28-1.62] P<0.001); and upper respiratory tract infection (URTI) symptoms (aOR 1.77 [95% CI 1.57-2.01] P<0.001). Predictors were similar for PCV10 and non-PCV10 carriage, except PCV10 carriage was negatively associated with PCV10 vaccination (0.58 [95% CI 0.41-0.82] P = 0.002) and positively associated with exposure to household cigarette smoke (aOR 1.21 [95% CI 1.02-1.43] P = 0.031), while there was no association between years post-PCV10 introduction and non-PCV10 carriage. Pneumococcal density was positively associated with URTI symptoms (adjusted median difference 0.28 [95% CI 0.16, 0.40] P<0.001) and toddler and child, compared with caregiver, participant groups (global P = 0.008). Predictors were similar for PCV10 and non-PCV10 density, except infant, toddler, and child participant groups were not associated with PCV10 density. PCV10 introduction was associated with reduced the odds of overall and PCV10 pneumococcal carriage in Fiji. However, after adjustment iTaukei ethnicity was positively associated with pneumococcal carriage compared with Fijians of Indian Descent, despite similar PCV10 coverage rates
Cellular Immune Responses 6 Years Following 1, 2, or 3 Doses of Quadrivalent HPV Vaccine in Fijian Girls and Subsequent Responses to a Dose of Bivalent HPV Vaccine.
BACKGROUND: This study examined the cellular immunity of 0, 1, 2, and 3 doses of Gardasil vaccine (4vHPV) in girls after 6 years and their responses to a subsequent dose of Cervarix vaccine (2vHPV). METHODS: A subset of girls (n = 59) who previously received 0, 1, 2, or 3 doses of 4vHPV 6 years earlier were randomly selected from a cohort study of Fijian girls (age 15-19 years). Blood was collected before and 28 days after a dose of 2vHPV. The HPV16- and HPV18-specific cellular immune response was determined by IFNγ-ELISPOT and by measurement of cytokines in peripheral blood mononuclear cell supernatants. RESULTS: Six years after 4vHPV vaccination, HPV18-specific responses were significantly lower in the 1- (1D) or 2-dose (2D) recipients compared with 3-dose recipients (2D: IFNγ-ELISPOT: P = .008; cytokines, IFNγ: P = .002; IL-2: P = .022; TNFα: P = .016; IL-10: P = .018; 1D: IL-2: P = .031; IL-10: P = .014). These differences were no longer significant post-2vHPV. No significant differences in HPV16 responses (except IL-2, P < .05) were observed between the 2- or 1-dose recipients and 3-dose recipients. CONCLUSIONS: These data suggest that cellular immunity following reduced-dose schedules was detectable after 6 years, although the responses were variable between HPV types and dosage groups. The clinical significance of this is unknown. Further studies on the impact of reduced dose schedules are needed, particularly in high-disease burden settings
Selective Persistence of HPV Cross-Neutralising Antibodies following Reduced-Dose HPV Vaccine Schedules.
The duration of cross-neutralising antibody responses (cross-NAb) following HPV immunisation is unknown. We compared cross-NAb responses in cohort of girls who were either unimmunised or had received immunisation with one, two or three doses of 4vHPV (Gardasil®,Merck Inc.) six years earlier, before and one month after a booster dose of 2vHPV (Cervarix®, GSK). NAb to potentially cross-reactive HPV genotypes 31, 33, 45, 52 and 58 were measured using a HPV pseudovirion-based neutralisation assay. Girls who had previously received at least one dose of 4vHPV had significantly higher NAb titres for HPV31 when compared with unimmunised girls, whereas no difference in NAb titre was observed for four other genotypes (33, 45, 52 and 58). Following a single further immunisation with 2vHPV, NAb titres to each of the five tested HPV genotypes were comparable for girls who previously received one, two or three doses of 4vHPV, and were significantly higher than for previously unimmunised girls. Immunisation with one, two or three doses of 4vHPV induced NAb to HPV31 that persisted for six years, but there was no persistence of NAb to HPV33, 45, 52 or 58. Our results suggest that one or two doses of 4vHPV may provide long-term protection against HPV31
Using pneumococcal carriage studies to monitor vaccine impact in low- and middle-income countries.
Pneumococcal disease is a leading cause of childhood mortality, globally. The pneumococcal conjugate vaccine (PCV) has been introduced to many countries worldwide. However there are few studies evaluating PCV impacts in low- and middle-income countries (LMIC) because measuring the impact of PCV on pneumococcal disease in LMICs is challenging. We review the role of pneumococcal carriage studies for the evaluation of PCVs in LMICs and discuss optimal methods for conducting these studies. Fifteen carriage studies from 13 LMICs quantified the effects of PCV on carriage, and identified replacement carriage serotypes in the post-PCV era. Ten studies reported on the indirect effects of PCV on carriage. Results can be used to inform cost-effectiveness evaluations, guide policy decisions on dosing and product, and monitor equity in program implementation. Critically, we highlight gaps in our understanding of serotype replacement disease in LMICs and identify priorities for research to address this gap
Levels of pneumococcal conjugate vaccine coverage and indirect protection against invasive pneumococcal disease and pneumonia hospitalisations in Australia: An observational study.
BackgroundThere is limited empiric evidence on the coverage of pneumococcal conjugate vaccines (PCVs) required to generate substantial indirect protection. We investigate the association between population PCV coverage and indirect protection against invasive pneumococcal disease (IPD) and pneumonia hospitalisations among undervaccinated Australian children.Methods and findingsBirth and vaccination records, IPD notifications, and hospitalisations were individually linked for children aged ConclusionsIn this study, we observed substantial indirect protection at lower levels of PCV coverage than previously described-challenging assumptions that high levels of PCV coverage (i.e., greater than 90%) are required. Understanding the association between PCV coverage and indirect protection is a priority since the control of vaccine-type pneumococcal disease is a prerequisite for reducing the number of PCV doses (from 3 to 2). Reduced dose schedules have the potential to substantially reduce program costs while maintaining vaccine impact
Evaluation of the impact of childhood 13-valent pneumococcal conjugate vaccine introduction on adult pneumonia in Ulaanbaatar, Mongolia: study protocol for an observational study.
BACKGROUND: Community-acquired pneumonia is an important cause of morbidity and mortality in adults. Approximately one-third of pneumonia cases can be attributed to the pneumococcus. Pneumococcal conjugate vaccines (PCVs) protect against colonisation with vaccine-type serotypes. The resulting decrease in transmission of vaccine serotypes leads to large indirect effects. There are limited data from developing countries demonstrating the impact of childhood PCV immunisation on adult pneumonia. There are also insufficient data available on the burden and severity of all-cause pneumonia and respiratory syncytial virus (RSV) in adults from low resource countries. There is currently no recommendation for adult pneumococcal vaccination with either pneumococcal polysaccharide vaccine or PCVs in Mongolia. We describe the protocol developed to evaluate the association between childhood 13-valent PCV (PCV13) vaccination and trends in adult pneumonia. METHODS: PCV13 was introduced into the routine childhood immunisation schedule in Mongolia in a phased manner from 2016. In March 2019 we initiated active hospital-based surveillance for adult pneumonia, with the primary objective of evaluating trends in severe hospitalised clinical pneumonia incidence in adults 18 years and older in four districts of Ulaanbaatar. Secondary objectives include measuring the association between PCV13 introduction and trends in all clinically-defined pneumonia, radiologically-confirmed pneumonia, nasopharyngeal carriage of S. pneumoniae and pneumonia associated with RSV or influenza. Clinical questionnaires, nasopharyngeal swabs, urine samples and chest radiographs were collected from enrolled patients. Retrospective administrative and clinical data were collected for all respiratory disease-related admissions from January 2015 to February 2019. DISCUSSION: Establishing a robust adult surveillance system may be an important component of monitoring the indirect impact of PCVs within a country. Monitoring indirect impact of childhood PCV13 vaccination on adult pneumonia provides additional data on the full public health impact of the vaccine, which has implications for vaccine efficiency and cost-effectiveness. Adult surveillance in Mongolia will contribute to the limited evidence available on the burden of pneumococcal pneumonia among adults in low- and middle-income countries, particularly in the Asia-Pacific region. In addition, it is one of the few examples of implementing prospective, population-based pneumonia surveillance to evaluate the indirect impact of PCVs in a resource-limited setting
Effect of ten-valent pneumococcal conjugate vaccine introduction on pneumonia hospital admissions in Fiji: a time-series analysis.
BACKGROUND: In October, 2012, Fiji introduced routine infant immunisation with a ten-valent pneumococcal conjugate vaccine (PCV10) using three primary doses and no booster dose (3 + 0 schedule). Data are scarce for the effect of PCV in the Asia and Pacific region. We aimed to evaluate the effect of PCV10 on pneumonia hospital admissions in children younger than 5 years and adults aged 55 years and older in Fiji, 5 years after vaccine introduction. METHODS: We did a time-series analysis assessing changes in pneumonia hospital admissions at three public tertiary hospitals in Fiji. Four pneumonia outcomes were evaluated: all-cause pneumonia, severe or very severe pneumonia, hypoxic pneumonia, and radiological pneumonia. Participants aged younger than 2 months, 2-23 months, 24-59 months, and 55 years and older were included. Data were extracted from the national hospital admission database according to International Classification of Diseases-tenth revision codes J10·0-18·9, J21, and J22 for all-cause pneumonia. Medical records and chest radiographs were reviewed for the main tertiary hospital to reclassify hospital admissions in children aged younger than 2 years as severe or very severe, hypoxic, or radiological pneumonia as per WHO definitions. Time-series analyses were done using the synthetic control method and multiple imputation to adjust for changes in hospital usage and missing data. FINDINGS: Between Jan 1, 2007, and Dec 31, 2017, the ratio of observed cases to expected cases for all-cause pneumonia was 0·92 (95% CI 0·70-1·36) for children aged younger than 2 months, 0·86 (0·74-1·00) for children aged 2-23 months, 0·74 (0·62-0·87) for children aged 24-59 months, and 1·90 (1·53-2·31) in adults aged 55 years and older, 5 years after PCV10 introduction. These findings indicate a reduction in all-cause pneumonia among children aged 24-59 months and an increase in adults aged 55 years and older, but no change among children aged younger than 2 months. Among children aged 2-23 months, we observed declines of 21% (95% CI 5-35) for severe or very severe pneumonia, 46% (33-56) for hypoxic pneumonia, and 25% (9-38) for radiological pneumonia. Mortality reduced by 39% (95% CI 5-62) for all-cause pneumonia, bronchiolitis, and asthma admissions in children aged 2-23 months. INTERPRETATION: The introduction of PCV10 was associated with a decrease in pneumonia hospital admissions in children aged 2-59 months. This is the first study in a middle-income country in the Asia and Pacific region to show the effect of PCV on pneumonia, filling gaps in the literature on the effects of PCV10 and 3 + 0 schedules. These data support decision making on PCV introduction for other low-income and middle-income countries in the region. FUNDING: Department of Foreign Affairs and Trade of the Australian Government