5 research outputs found

    Clinically relevant preservation conditions for mesenchymal stem/stromal cells derived from perinatal and adult tissue sources

    Get PDF
    The interplay between mesenchymal stem/stromal cells (MSCs) and preservation conditions is critical to maintain the viability and functionality of these cells before administration. We observed that Ringer lactate (RL) maintained high viability of bone marrow–derived MSCs for up to 72 h at room temperature (18°C–22°C), whereas adipose-derived and umbilical cord-derived MSCs showed the highest viability for 72 h at a cold temperature (4°C–8°C). These cells maintained their adherence ability with an improved recovery rate and metabolic profiles (glycolysis and mitochondrial respiration) similar to those of freshly harvested cells. Growth factor and cytokine analyses revealed that the preserved cells released substantial amounts of leukaemia inhibitory factors (LIFs), hepatocyte growth factor (HGF) and vascular endothelial growth factor-A (VEGF-A), as well as multiple cytokines (eg IL-4, IL-6, IL-8, MPC-1 and TNF-α). Our data provide the simplest clinically relevant preservation conditions that maintain the viability, stemness and functionality of MSCs from perinatal and adult tissue sources

    Clinical Study of Mesenchymal Stem/Stromal Cell Therapy for the Treatment of Frailty: A Proposed Experimental Design for Therapeutic and Mechanistic Investigation

    Get PDF
    Frailty, a specific condition of increased vulnerability and reduced general health associated with aging in older people, is an emerging problem worldwide with major implications for clinical practice and public health. Recent preclinical and clinical studies have supported the safety of mesenchymal stem/stromal cells (MSCs) in the treatment of frailty. Comprehensive study is needed to assess the interrelationship between the condition of frailty and the effects of MSC-based therapy. This randomized controlled phase I/II trial aims to investigate the safety and potential therapeutic efficacy of the allogeneic administration of umbilical cord-derived MSCs (UC-MSCs) in combination with the standard treatment for frailty in Vietnam. Moreover, this study describes the rationales, study designs, methodologies, and analytical strategies currently employed in stem cell research and clinical studies. The primary outcome measures will include the incidences of prespecified administration-associated adverse events and serious adverse events. The potential efficacy will be evaluated based on improvements in frailty conditions (including those determined through a physical examination, patient-reported outcomes, quality of life, immune markers of frailty, metabolism analysis, and cytokine markers from patient plasma). This clinical trial and stem cell analysis associated with patient sampling at different time points aim to identify and characterize the potential effects of UC-MSCs on improving frailty based on the stem cell quality, cytokine/growth factor secretion profiles of UC-MSCs, cellular senescence, and metabolic analysis of patient CD3+ cells providing fundamental knowledge for designing and implementing research strategies in future studies. Clinical Trials Registration Number: NCT0491913

    Stem cell-based therapy for human diseases

    Get PDF
    Recent advancements in stem cell technology open a new door for patients suffering from diseases and disorders that have yet to be treated. Stem cell-based therapy, including human pluripotent stem cells (hPSCs) and multipotent mesenchymal stem cells (MSCs), has recently emerged as a key player in regenerative medicine. hPSCs are defined as self-renewable cell types conferring the ability to differentiate into various cellular phenotypes of the human body, including three germ layers. MSCs are multipotent progenitor cells possessing self-renewal ability (limited in vitro) and differentiation potential into mesenchymal lineages, according to the International Society for Cell and Gene Therapy (ISCT). This review provides an update on recent clinical applications using either hPSCs or MSCs derived from bone marrow (BM), adipose tissue (AT), or the umbilical cord (UC) for the treatment of human diseases, including neurological disorders, pulmonary dysfunctions, metabolic/endocrine-related diseases, reproductive disorders, skin burns, and cardiovascular conditions. Moreover, we discuss our own clinical trial experiences on targeted therapies using MSCs in a clinical setting, and we propose and discuss the MSC tissue origin concept and how MSC origin may contribute to the role of MSCs in downstream applications, with the ultimate objective of facilitating translational research in regenerative medicine into clinical applications. The mechanisms discussed here support the proposed hypothesis that BM-MSCs are potentially good candidates for brain and spinal cord injury treatment, AT-MSCs are potentially good candidates for reproductive disorder treatment and skin regeneration, and UC-MSCs are potentially good candidates for pulmonary disease and acute respiratory distress syndrome treatment

    Type 2 Diabetes Mellitus Duration and Obesity alter the Efficacy of Autologously Transplanted Bone Marrow-derived Mesenchymal Stem/Stromal Cells

    Get PDF
    Human bone marrow-derived mesenchymal stem/stromal cells (BM-MSCs) represent promising stem cell therapy for the treatment of type 2 diabetes mellitus (T2DM), but the results of autologous BM-MSC administration in T2DM patients are contradictory. The purpose of this study was to test the hypothesis that autologous BM-MSC administration in T2DM patient is safe and that the efficacy of the treatment is dependant on the quality of the autologous BM-MSC population and administration routes. T2DM patients were enrolled, randomly assigned (1:1) by a computer-based system into the intravenous and dorsal pancreatic arterial groups. The safety was assessed in all the treated patients, and the efficacy was evaluated based on the absolute changes in the hemoglobin A1c, fasting blood glucose, and C-peptide levels throughout the 12-month follow-up. Our data indicated that autologous BM-MSC administration was well tolerated in 30 T2DM patients. Short-term therapeutic effects were observed in patients with T2DM duration of <10 years and a body mass index <23, which is in line with the phenotypic analysis of the autologous BM-MSC population. T2DM duration directly altered the proliferation rate of BM-MSCs, abrogated the glycolysis and mitochondria respiration of BM-MSCs, and induced the accumulation of mitochondria DNA mutation. Our data suggest that autologous administration of BM-MSCs in the treatment of T2DM should be performed in patients with T2DM duration <10 years and no obesity. Prior to further confirming the effects of T2DM on BM-MSC biology, future work with a larger cohort focusing on patients with different T2DM history is needed to understand the mechanism underlying our observation

    Advanced cell-based products generated via automated and manual manufacturing platforms under the quality by design principle: Are they equivalent or different?

    No full text
    Mesenchymal stem/stromal cells (MSCs) are multipotent stem cells that can be isolated from bone marrow, adipose tissue, the umbilical cord, dental pulp, etc. These cells have unique properties that give them excellent therapeutic potential, including immunoregulation, immunomodulation, and tissue regeneration functions. MSC-based products are considered advanced therapy medicinal products (ATMPs) under European regulations (1394/2007); thus, they must be manufactured under good manufacturing practices and via effective manufacturing methods. The former can be achieved via a proper laboratory design and compliance with manufacturing protocols, whereas the latter requires an approach that ensures that the quality of the products is consistent regardless of the manufacturing procedure. To meet these daunting requirements, this study proposes an exchangeable approach that combines optimized and equivalent manufacturing processes under the Quality by Design (QbD) principle, allowing investigators to convert from small laboratory-scale to large-scale manufacturing of MSC-based products for clinical applications without altering the quality and quantity of the cell-based products
    corecore