71,716 research outputs found
Coded Modulation Assisted Radial Basis Function Aided Turbo Equalisation for Dispersive Rayleigh Fading Channels
In this contribution a range of Coded Modulation (CM) assisted Radial Basis Function (RBF) based Turbo Equalisation (TEQ) schemes are investigated when communicating over dispersive Rayleigh fading channels. Specifically, 16QAM based Trellis Coded Modulation (TCM), Turbo TCM (TTCM), Bit-Interleaved Coded Modulation (BICM) and iteratively decoded BICM (BICM-ID) are evaluated in the context of an RBF based TEQ scheme and a reduced-complexity RBF based In-phase/Quadrature-phase (I/Q) TEQ scheme. The Least Mean Square (LMS) algorithm was employed for channel estimation, where the initial estimation step-size used was 0.05, which was reduced to 0.01 for the second and the subsequent TEQ iterations. The achievable coding gain of the various CM schemes was significantly increased, when employing the proposed RBF-TEQ or RBF-I/Q-TEQ rather than the conventional non-iterative Decision Feedback Equaliser - (DFE). Explicitly, the reduced-complexity RBF-I/Q-TEQ-CM achieved a similar performance to the full-complexity RBF-TEQ-CM, while attaining a significant complexity reduction. The best overall performer was the RBF-I/Q-TEQ-TTCM scheme, requiring only 1.88~dB higher SNR at BER=10-5, than the identical throughput 3~BPS uncoded 8PSK scheme communicating over an AWGN channel. The coding gain of the scheme was 16.78-dB
A Constrained Tectonics Model for Coronal Heating
An analytical and numerical treatment is given of a constrained version of
the tectonics model developed by Priest, Heyvaerts, & Title [2002]. We begin
with an initial uniform magnetic field that is
line-tied at the surfaces and . This initial configuration is
twisted by photospheric footpoint motion that is assumed to depend on only one
coordinate () transverse to the initial magnetic field. The geometric
constraints imposed by our assumption precludes the occurrence of reconnection
and secondary instabilities, but enables us to follow for long times the
dissipation of energy due to the effects of resistivity and viscosity. In this
limit, we demonstrate that when the coherence time of random photospheric
footpoint motion is much smaller by several orders of magnitude compared with
the resistive diffusion time, the heating due to Ohmic and viscous dissipation
becomes independent of the resistivity of the plasma. Furthermore, we obtain
scaling relations that suggest that even if reconnection and/or secondary
instabilities were to limit the build-up of magnetic energy in such a model,
the overall heating rate will still be independent of the resistivity
Electrostatic Structures in Space Plasmas: Stability of Two-dimensional Magnetic Bernstein-Greene-Kruskal Modes
Electrostatic structures have been observed in many regions of space plasmas,
including the solar wind, the magnetosphere, the auroral acceleration region,
and in association with shocks, turbulence, and magnetic reconnection. Due to
potentially large amplitude of electric fields within these structures, their
effects on particle heating, scattering, or acceleration can be important. One
possible theoretical description of some of these structures is the concept of
Bernstein-Greene-Kruskal (BGK) modes, which are exact nonlinear solutions of
the Vlasov-Poisson system of equations in collisionless kinetic theory. BGK
modes have been studied extensively for many decades, predominately in one
dimension (1D), although there have been observations showing that some of
these structures have clear 3D features. While there have been approximate
solutions of higher dimensional BGK modes, an exact 3D BGK mode solution in a
finite magnetic field has not been found yet. Recently we have constructed
exact solutions of 2D BGK modes in a magnetized plasma with finite magnetic
field strength in order to gain insights of the ultimate 3D theory [Ng,
Bhattacharjee, and Skiff, Phys. Plasmas 13, 055903 (2006)]. Based on the
analytic form of these solutions, as well as Particle-in-Cell (PIC)
simulations, we will present numerical studies of their stability for different
levels of background magnetic field strength.Comment: Submitted to AIP Journal Proceedings for "Tenth Annual International
Astrophysics Conference
On the MIMO Channel Capacity of Multi-Dimensional Signal Sets
In this contribution we evaluate the capacity of Multi-Input Multi-Output (MIMO) systems using multi-dimensional PSK/QAM signal sets. It was shown that transmit diversity is capable of narrowing the gap between the capacity of the Rayleigh-fading channel and the AWGN channel. However, since this gap becomes narrower when the receiver diversity order is increased, for higher-order receiver diversity the performance advantage of transmit diversity diminishes. A MIMO system having full multiplexing gain has a higher achievable throughput than the corresponding MIMO system designed for full diversity gain, although this is attained at the cost of a higher complexity and a higher SNR. The tradeoffs between diversity gain, multiplexing gain, complexity and bandwidth are studied
On the MIMO Channel Capacity of Multi-Dimensional Signal Sets
In this contribution two general formulae were derived for the capacity evaluation of Multi-Input Multi-Output (MIMO) systems using multi-dimensional signal sets, different modulation schemes and an arbitrary number of transmit as well as receive antennas. It was shown that transmit diversity is capable of narrowing the gap between the capacity of the Rayleigh-fading channel and the AWGN channel. However, since this gap becomes narrower when the receiver diversity order is increased, for higher-order receiver diversity the performance advantage of transmit diversity diminishes. A MIMO system having full multiplexing gain has a higher achievable capacity, than the corresponding MIMO system designed for achieving full diversity gain, provided that the channel SNR is sufficiently high
- …