43,620 research outputs found

    Spacetime Foam, Holographic Principle, and Black Hole Quantum Computers

    Full text link
    Spacetime foam, also known as quantum foam, has its origin in quantum fluctuations of spacetime. Arguably it is the source of the holographic principle, which severely limits how densely information can be packed in space. Its physics is also intimately linked to that of black holes and computation. In particular, the same underlying physics is shown to govern the computational power of black hole quantum computers.Comment: 8 pages, LaTeX; Talk given by Jack Ng, in celebration of Paul Frampton's 60th birthday, at the Coral Gables Conference (in Fort Lauderdale, Florida on December 17, 2003). To appear in the Proceedings of the 2003 Coral Gables Conferenc

    From computation to black holes and space-time foam

    Get PDF
    We show that quantum mechanics and general relativity limit the speed ν~\tilde{\nu} of a simple computer (such as a black hole) and its memory space II to \tilde{\nu}^2 I^{-1} \lsim t_P^{-2}, where tPt_P is the Planck time. We also show that the life-time of a simple clock and its precision are similarly limited. These bounds and the holographic bound originate from the same physics that governs the quantum fluctuations of space-time. We further show that these physical bounds are realized for black holes, yielding the correct Hawking black hole lifetime, and that space-time undergoes much larger quantum fluctuations than conventional wisdom claims -- almost within range of detection with modern gravitational-wave interferometers.Comment: A misidentification of computer speeds is corrected. Our results for black hole computation now agree with those given by S. Lloyd. All other conclusions remain unchange

    On Quantum Nature of Black-Hole Spacetime: A Possible New Source of Intense Radiation

    Get PDF
    Atoms and the planets acquire their stability from the quantum mechanical incompatibility of the position and momentum measurements. This incompatibility is expressed by the fundamental commutator [x, p_x]=i hbar, or equivalently, via the Heisenberg's uncertainty principle Delta x Delta p_x sim hbar. A further stability-related phenomenon where the quantum realm plays a dramatic role is the collapse of certain stars into white dwarfs and neutron stars. Here, an intervention of the Pauli exclusion principle, via the fermionic degenerate pressure, stops the gravitational collapse. However, by the neutron-star stage the standard quantum realm runs dry. One is left with the problematic collapse of a black hole. This essay is devoted to a concrete argument on why the black-hole spacetime itself should exhibit a quantum nature. The proposed quantum aspect of spacetime is shown to prevent the general-relativistic dictated problematic collapse. The quantum nature of black-hole spacetime is deciphered from a recent result on the universal equal-area spacing [=lambda_P^2 4 ln(3)] for black holes. In one interpretation of the emergent picture, an astrophysical black hole can fluctuate to sqrt{pi/ln(3)} approx 1.7 times its classical size, and thus allow radiation and matter to escape to the outside observers. These fluctuations I conjecture provide a new source, perhaps beyond Hawking radiation, of intense radiation from astrophysical black holes and may be the primary source of observed radiation from those galactic cores what carry black hole(s). The presented interpretation may be used as a criterion to choose black holes from black hole candidates.Comment: This essay received an "honorable mention" in the 1999 Essay Competition of the Gravity Research Foundation - Ed. Int. J. Mod. Phys. D (1999, in press). For Joseph Knech

    Spectra of Magnetic Fields Injected during Baryogenesis

    Full text link
    Helical magnetic fields are injected into the cosmic medium during cosmological baryogenesis and can potentially provide a useful probe of the early universe. We construct a model to study the injection process during a first order phase transition and to determine the power spectra of the injected magnetic field. By Monte Carlo simulations we evaluate the Fourier space symmetric and helical power spectra of the magnetic field at the time the phase transition completes. The spectra are peaked at the scale given by the inverse size of bubbles at percolation and with a comparable width. These injected magnetic fields set the initial conditions for further cosmological magneto-hydrodynamical evolution.Comment: 8 pages, 9 figures; revised discussion and added new references; version accepted for publication in PR

    Fast beam stacking using RF barriers

    Get PDF
    Two barrier RF systems were fabricated, tested and installed in the Fermilab Main Injector. Each can provide 8 kV rectangular pulses (the RF barriers) at 90 kHz. When a stationary barrier is combined with a moving barrier, injected beams from the Booster can be continuously deflected, folded and stacked in the Main Injector, which leads to doubling of the beam intensity. This paper gives a report on the beam experiment using this novel technology.Comment: 2007 Particle Accelerator Conference (PAC07

    Chiral symmetry breaking in a uniform external magnetic field II. Symmetry restoration at high temperatures and chemical potentials

    Full text link
    Chiral symmetry is dynamically broken in quenched, ladder QED at weak gauge couplings when an external magnetic field is present. In this paper, we show that chiral symmetry is restored above a critical chemical potential and the corresponding phase transition is of first order. In contrast, the chiral symmetry restoration at high temperatures (and at zero chemical potential) is a second order phase transition.Comment: Latex; 12 pages; 8 postscript figures include

    Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs low-yield pathways

    Get PDF
    Formation of SOA from the aromatic species toluene, xylene, and, for the first time, benzene, is added to a global chemical transport model. A simple mechanism is presented that accounts for competition between low and high-yield pathways of SOA formation, wherein secondary gas-phase products react further with either nitrogen oxide (NO) or hydroperoxy radical (HO2) to yield semi- or non-volatile products, respectively. Aromatic species yield more SOA when they react with OH in regions where the [NO]/[HO2] ratios are lower. The SOA yield thus depends upon the distribution of aromatic emissions, with biomass burning emissions being in areas with lower [NO]/[HO2] ratios, and the reactivity of the aromatic with respect to OH, as a lower initial reactivity allows transport away from industrial source regions, where [NO]/[HO2] ratios are higher, to more remote regions, where this ratio is lower and, hence, the ultimate yield of SOA is higher. As a result, benzene is estimated to be the most important aromatic species with regards to formation of SOA, with a total production nearly equal that of toluene and xylene combined. In total, while only 39% percent of the aromatic species react via the low-NOx pathway, 72% of the aromatic SOA is formed via this mechanism. Predicted SOA concentrations from aromatics in the Eastern United States and Eastern Europe are actually largest during the summer, when the [NO]/[HO2] ratio is lower. Global production of SOA from aromatic sources is estimated at 3.5 Tg/yr, resulting in a global burden of 0.08 Tg, twice as large as previous estimates. The contribution of these largely anthropogenic sources to global SOA is still small relative to biogenic sources, which are estimated to comprise 90% of the global SOA burden, about half of which comes from isoprene. Compared to recent observations, it would appear there are additional pathways beyond those accounted for here for production of anthropogenic SOA. However, owing to differences in spatial distributions of sources and seasons of peak production, there are still regions in which aromatic SOA produced via the mechanisms identified here are predicted to contribute substantially to, and even dominate, the local SOA concentrations, such as outflow regions from North America and South East Asia during the wintertime, though total SOA concentrations there are small (~0.1 μg/m^³)

    Effect of dead space on avalanche speed

    Get PDF
    The effects of dead space (the minimum distance travelled by a carrier before acquiring enough energy to impact ionize) on the current impulse response and bandwidth of an avalanche multiplication process are obtained from a numerical model that maintains a constant carrier velocity but allows for a random distribution of impact ionization path lengths. The results show that the main mechanism responsible for the increase in response time with dead space is the increase in the number of carrier groups, which qualitatively describes the length of multiplication chains. When the dead space is negligible, the bandwidth follows the behavior predicted by Emmons but decreases as dead space increase
    corecore