392 research outputs found

    Split transition in ferromagnetic superconductors

    Full text link
    The split superconducting transition of up-spin and down-spin electrons on the background of ferromagnetism is studied within the framework of a recent model that describes the coexistence of ferromagnetism and superconductivity induced by magnetic fluctuations. It is shown that one generically expects the two transitions to be close to one another. This conclusion is discussed in relation to experimental results on URhGe. It is also shown that the magnetic Goldstone modes acquire an interesting structure in the superconducting phase, which can be used as an experimental tool to probe the origin of the superconductivity.Comment: REVTeX4, 15 pp, 7 eps fig

    Normal Cones and Thompson Metric

    Full text link
    The aim of this paper is to study the basic properties of the Thompson metric dTd_T in the general case of a real linear space XX ordered by a cone KK. We show that dTd_T has monotonicity properties which make it compatible with the linear structure. We also prove several convexity properties of dTd_T and some results concerning the topology of dTd_T, including a brief study of the dTd_T-convergence of monotone sequences. It is shown most of the results are true without any assumption of an Archimedean-type property for KK. One considers various completeness properties and one studies the relations between them. Since dTd_T is defined in the context of a generic ordered linear space, with no need of an underlying topological structure, one expects to express its completeness in terms of properties of the ordering, with respect to the linear structure. This is done in this paper and, to the best of our knowledge, this has not been done yet. The Thompson metric dTd_T and order-unit (semi)norms u|\cdot|_u are strongly related and share important properties, as both are defined in terms of the ordered linear structure. Although dTd_T and u|\cdot|_u are only topological (and not metrical) equivalent on KuK_u, we prove that the completeness is a common feature. One proves the completeness of the Thompson metric on a sequentially complete normal cone in a locally convex space. At the end of the paper, it is shown that, in the case of a Banach space, the normality of the cone is also necessary for the completeness of the Thompson metric.Comment: 36 page

    Thermostatistics of deformed bosons and fermions

    Full text link
    Based on the q-deformed oscillator algebra, we study the behavior of the mean occupation number and its analogies with intermediate statistics and we obtain an expression in terms of an infinite continued fraction, thus clarifying successive approximations. In this framework, we study the thermostatistics of q-deformed bosons and fermions and show that thermodynamics can be built on the formalism of q-calculus. The entire structure of thermodynamics is preserved if ordinary derivatives are replaced by the use of an appropriate Jackson derivative and q-integral. Moreover, we derive the most important thermodynamic functions and we study the q-boson and q-fermion ideal gas in the thermodynamic limit.Comment: 14 pages, 2 figure

    Minimal SUSY SO(10) model and predictions for neutrino mixings and leptonic CP violation

    Full text link
    We discuss a minimal Supersymmetric SO(10) model where B-L symmetry is broken by a {\bf 126} dimensional Higgs multiplet which also contributes to fermion masses in conjunction with a {\bf 10} dimensional superfield. This minimal Higgs choice provides a partial unification of neutrino flavor structure with that of quarks and has been shown to predict all three neutrino mixing angles and the solar mass splitting in agreement with observations, provided one uses the type II seesaw formula for neutrino masses. In this paper we generalize this analysis to include arbitrary CP phases in couplings and vevs. We find that (i) the predictions for neutrino mixings are similar with Ue30.18U_{e3}\simeq 0.18 as before and other parameters in a somewhat bigger range and (ii) that to first order in the quark mixing parameter λ\lambda (the Cabibbo angle), the leptonic mixing matrix is CP conserving. We also find that in the absence of any higher dimensional contributions to fermion masses, the CKM phase is different from that of the standard model implying that there must be new contributions to quark CP violation from the supersymmetry breaking sector. Inclusion of higher dimensional terms however allows the standard model CKM phase to be maintained.Comment: 22 pages, 6 figure

    Lepton Flavour Violating Leptonic/Semileptonic Decays of Charged Leptons in the Minimal Supersymmetric Standard Model

    Full text link
    We consider the leptonic and semileptonic (SL) lepton flavour violating (LFV) decays of the charged leptons in the minimal supersymmetric standard model (MSSM). The formalism for evaluation of branching fractions for the SL LFV charged-lepton decays with one or two pseudoscalar mesons, or one vector meson in the final state, is given. Previous amplitudes for the SL LFV charged-lepton decays in MSSM are improved, for instance the γ\gamma-penguin amplitude is corrected to assure the gauge invariance. The decays are studied not only in the model-independent formulation of the theory in the frame of MSSM, but also within the frame of the minimal supersymmetric SO(10) model within which the parameters of the MSSM are determined. The latter model gives predictions for the neutrino-Dirac Yukawa coupling matrix, once free parameters in the model are appropriately fixed to accommodate the recent neutrino oscillation data. Using this unambiguous neutrino-Dirac Yukawa couplings, we calculate the LFV leptonic and SL decay processes assuming the minimal supergravity scenario. A very detailed numerical analysis is done to constrain the MSSM parameters. Numerical results for SL LFV processes are given, for instance for tau -> e (mu) pi0, tau -> e (mu) eta, tau -> e (mu) eta', tau -> e (mu) rho0, tau -> e (mu) phi, tau -> e (mu) omega, etc.Comment: 36 pages, 3 tables, 5 .eps figure

    Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC

    Measurement of the Bottom contribution to non-photonic electron production in p+pp+p collisions at s\sqrt{s} =200 GeV

    Get PDF
    The contribution of BB meson decays to non-photonic electrons, which are mainly produced by the semi-leptonic decays of heavy flavor mesons, in p+pp+p collisions at s=\sqrt{s} = 200 GeV has been measured using azimuthal correlations between non-photonic electrons and hadrons. The extracted BB decay contribution is approximately 50% at a transverse momentum of pT5p_{T} \geq 5 GeV/cc. These measurements constrain the nuclear modification factor for electrons from BB and DD meson decays. The result indicates that BB meson production in heavy ion collisions is also suppressed at high pTp_{T}.Comment: 6 pages, 4 figures, accepted by PR

    Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV

    Get PDF
    We present measurements of the charge balance function, from the charged particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au collisions at 200 GeV using the STAR detector at RHIC. We observe that the balance function is boost-invariant within the pseudorapidity coverage [-1.3, 1.3]. The balance function properly scaled by the width of the observed pseudorapidity window does not depend on the position or size of the pseudorapidity window. This scaling property also holds for particles in different transverse momentum ranges. In addition, we find that the width of the balance function decreases monotonically with increasing transverse momentum for all centrality classes.Comment: 6 pages, 3 figure

    Energy and system size dependence of \phi meson production in Cu+Cu and Au+Au collisions

    Get PDF
    We study the beam-energy and system-size dependence of \phi meson production (using the hadronic decay mode \phi -- K+K-) by comparing the new results from Cu+Cu collisions and previously reported Au+Au collisions at \sqrt{s_NN} = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented are from mid-rapidity (|y|<0.5) for 0.4 < pT < 5 GeV/c. At a given beam energy, the transverse momentum distributions for \phi mesons are observed to be similar in yield and shape for Cu+Cu and Au+Au colliding systems with similar average numbers of participating nucleons. The \phi meson yields in nucleus-nucleus collisions, normalised by the average number of participating nucleons, are found to be enhanced relative to those from p+p collisions with a different trend compared to strange baryons. The enhancement for \phi mesons is observed to be higher at \sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations for the produced \phi(s\bar{s}) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems.Comment: 20 pages and 5 figure

    D* Production in Deep Inelastic Scattering at HERA

    Get PDF
    This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel D+(D0Kπ+)π+D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ (+ c.c.) has been used in the study. The e+pe^+p cross section for inclusive D^{*\pm} production with 5<Q2<100GeV25<Q^2<100 GeV^2 and y<0.7y<0.7 is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {1.3<pT(D±)<9.01.3<p_T(D^{*\pm})<9.0 GeV and η(D±)<1.5| \eta(D^{*\pm}) |<1.5}. Differential cross sections as functions of p_T(D^{*\pm}), η(D±),W\eta(D^{*\pm}), W and Q2Q^2 are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and η\eta(D^{*\pm}), the charm contribution F2ccˉ(x,Q2)F_2^{c\bar{c}}(x,Q^2) to the proton structure function is determined for Bjorken xx between 2 \cdot 104^{-4} and 5 \cdot 103^{-3}.Comment: 17 pages including 4 figure
    corecore