467 research outputs found

    Finite-temperature Fermi-edge singularity in tunneling studied using random telegraph signals

    Full text link
    We show that random telegraph signals in metal-oxide-silicon transistors at millikelvin temperatures provide a powerful means of investigating tunneling between a two-dimensional electron gas and a single defect state. The tunneling rate shows a peak when the defect level lines up with the Fermi energy, in excellent agreement with theory of the Fermi-edge singularity at finite temperature. This theory also indicates that defect levels are the origin of the dissipative two-state systems observed previously in similar devices.Comment: 5 pages, REVTEX, 3 postscript figures included with epsfi

    Flavon exchange effects in models with abelian flavor symmetry

    Get PDF
    In models with abelian flavor symmetry the small mixing angles and mass ratios of quarks and leptons are typically given by powers of small parameters characterizing the spontaneous breaking of flavor symmetry by "flavon" fields. If the scale of the breaking of flavor symmetry is near the weak scale, flavon exchange can lead to interesting flavor-violating and CP violating effects. These are studied. It is found that d_e, mu -> e + gamma, and mu-e conversion on nuclei can be near present limits. For significant range of parameters mu-e conversion can be the most sensitive way to look for such effects.Comment: 19 pages, 5 Postscript figures, LATE

    New Higgs signals induced by mirror fermion mixing effects

    Full text link
    We study the conditions under which flavor violation arises in scalar-fermion interactions, as a result of the mixing phenomena between the standard model and exotic fermions. Phenomenological consequences are discussed within the specific context of a left-right model where these additional fermions have mirror properties under the new SU(2)_R gauge group. Bounds on the parameters of the model are obtained from LFV processes; these results are then used to study the LFV Higgs decays (H --> tau l_j, l_j = e, mu), which reach branching ratios that could be detected at future colliders.Comment: 12 pages, 2 figures, ReVTex4, graphicx, to be published in Phys. Rev.

    Minimal SUSY SO(10) model and predictions for neutrino mixings and leptonic CP violation

    Full text link
    We discuss a minimal Supersymmetric SO(10) model where B-L symmetry is broken by a {\bf 126} dimensional Higgs multiplet which also contributes to fermion masses in conjunction with a {\bf 10} dimensional superfield. This minimal Higgs choice provides a partial unification of neutrino flavor structure with that of quarks and has been shown to predict all three neutrino mixing angles and the solar mass splitting in agreement with observations, provided one uses the type II seesaw formula for neutrino masses. In this paper we generalize this analysis to include arbitrary CP phases in couplings and vevs. We find that (i) the predictions for neutrino mixings are similar with Ue30.18U_{e3}\simeq 0.18 as before and other parameters in a somewhat bigger range and (ii) that to first order in the quark mixing parameter λ\lambda (the Cabibbo angle), the leptonic mixing matrix is CP conserving. We also find that in the absence of any higher dimensional contributions to fermion masses, the CKM phase is different from that of the standard model implying that there must be new contributions to quark CP violation from the supersymmetry breaking sector. Inclusion of higher dimensional terms however allows the standard model CKM phase to be maintained.Comment: 22 pages, 6 figure

    Top A_FB at the Tevatron vs. charge asymmetry at the LHC in chiral U(1) flavor models with flavored Higgs doublets

    Full text link
    We consider the top forward-backward (FB) asymmetry at the Tevatron and top charge asymmetry at the LHC within chiral U(1)^\prime models with flavor-dependent U(1)^\prime charges and flavored Higgs fields, which were introduced in the ref. [65]. The models could enhance not only the top forward-backward asymmetry at Tevatron, but also the top charge asymmetry at LHC, without too large same-sign top pair production rates. We identify parameter spaces for the U(1)^\prime gauge boson and (pseudo)scalar Higgs bosons where all the experimental data could be accommodated, including the case with about 125 GeV Higgs boson, as suggested recently by ATLAS and CMS.Comment: 11 pages, 6 figures, figures and discussion adde

    Conductance anomalies and the extended Anderson model for nearly perfect quantum wires

    Full text link
    Anomalies near the conductance threshold of nearly perfect semiconductor quantum wires are explained in terms of singlet and triplet resonances of conduction electrons with a single weakly-bound electron in the wire. This is shown to be a universal effect for a wide range of situations in which the effective single-electron confinement is weak. The robustness of this generic behavior is investigated numerically for a wide range of shapes and sizes of cylindrical wires with a bulge. The dependence on gate voltage, source-drain voltage and magnetic field is discussed within the framework of an extended Hubbard model. This model is mapped onto an extended Anderson model, which in the limit of low temperatures is expected to lead to Kondo resonance physics and pronounced many-body effects

    Lepton Flavour Violating Leptonic/Semileptonic Decays of Charged Leptons in the Minimal Supersymmetric Standard Model

    Full text link
    We consider the leptonic and semileptonic (SL) lepton flavour violating (LFV) decays of the charged leptons in the minimal supersymmetric standard model (MSSM). The formalism for evaluation of branching fractions for the SL LFV charged-lepton decays with one or two pseudoscalar mesons, or one vector meson in the final state, is given. Previous amplitudes for the SL LFV charged-lepton decays in MSSM are improved, for instance the γ\gamma-penguin amplitude is corrected to assure the gauge invariance. The decays are studied not only in the model-independent formulation of the theory in the frame of MSSM, but also within the frame of the minimal supersymmetric SO(10) model within which the parameters of the MSSM are determined. The latter model gives predictions for the neutrino-Dirac Yukawa coupling matrix, once free parameters in the model are appropriately fixed to accommodate the recent neutrino oscillation data. Using this unambiguous neutrino-Dirac Yukawa couplings, we calculate the LFV leptonic and SL decay processes assuming the minimal supergravity scenario. A very detailed numerical analysis is done to constrain the MSSM parameters. Numerical results for SL LFV processes are given, for instance for tau -> e (mu) pi0, tau -> e (mu) eta, tau -> e (mu) eta', tau -> e (mu) rho0, tau -> e (mu) phi, tau -> e (mu) omega, etc.Comment: 36 pages, 3 tables, 5 .eps figure

    Unimodular bimode gravity and the coherent scalar-graviton field as galaxy dark matter

    Full text link
    The explicit violation of the general gauge invariance/relativity is adopted as the origin of dark matter and dark energy of the gravitational nature. The violation of the local scale invariance alone, with the residual unimodular one, is considered. Besides the four-volume preserving deformation mode -- the transverse-tensor graviton -- the metric comprises a compression mode -- the scalar graviton, or the systolon. A unimodular invariant and general covariant metric theory of the bimode/scalar-tensor gravity is consistently worked out. To reduce the primordial ambiguity of the theory a dynamical global symmetry is imposed, with its subsequent spontaneous breaking revealed. The static spherically symmetric case in the empty, but possibly for the origin, space is studied. A three-parameter solution describing a new static space structure -- the dark lacuna -- is constructed. It enjoys the property of gravitational confinement, with the logarithmic potential of gravitational attraction at the periphery, and results in the asymptotically flat rotation curves. Comprising a super-massive dark fracture (a scalar-modified black hole) at the origin surrounded by a cored dark halo, the dark lacunas are proposed as a prototype model of galaxies, implying an ultimate account for the distributed non-gravitational matter and a putative asphericity or rotation.Comment: 38 pages, 10 figures; exposition improved, remarks added, accepted for publicatio

    Update of the Search for the Neutrinoless Decay τμγ\tau\to \mu\gamma

    Full text link
    We present an update of the search for the lepton family number violating decay τμγ\tau \to \mu\gamma using a complete CLEO II data sample of 12.6 million τ+τ\tau^+\tau^- pairs. No evidence of a signal has been found and the corresponding upper limit is \BR(\tau \to \mu\gamma) < 1.0 \times 10^{-6} at 90% CL, significantly smaller than previous limits. All quoted results are preliminary.Comment: 9 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Green function techniques in the treatment of quantum transport at the molecular scale

    Full text link
    The theoretical investigation of charge (and spin) transport at nanometer length scales requires the use of advanced and powerful techniques able to deal with the dynamical properties of the relevant physical systems, to explicitly include out-of-equilibrium situations typical for electrical/heat transport as well as to take into account interaction effects in a systematic way. Equilibrium Green function techniques and their extension to non-equilibrium situations via the Keldysh formalism build one of the pillars of current state-of-the-art approaches to quantum transport which have been implemented in both model Hamiltonian formulations and first-principle methodologies. We offer a tutorial overview of the applications of Green functions to deal with some fundamental aspects of charge transport at the nanoscale, mainly focusing on applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references, submitted to Springer series "Lecture Notes in Physics
    corecore