57 research outputs found

    Effectiveness of habitat management in the recovery of low-density populations of wild rabbit.

    Get PDF
    Understanding the relationship between spatial patterns of landscape attributes and population presence and abundance is essential for understanding population processes as well as supporting management and conservation strategies. This study evaluates the influence of three factors: environment, habitat management, and season on the presence and abundance of the wild rabbit (Oryctolagus cuniculus), an important prey species for Mediterranean endangered predator species. To address this issue, we estimated wild rabbit presence and abundance by latrine counting in transects located in 45 plots within a 250×250 m grid from June 2007 until June 2009 in a 1,200 ha hunting area in southern Portugal.We then analyzed how wild rabbit presence and abundance correlatewith the aforementioned factors. Our results showed that the main variable influencing wild rabbit presence and abundance was the distance to the artificial warrens. North and northeast slope directions were negatively related to wild rabbit presence. Conversely, rabbit presence was positively correlated with short distances to ecotone, artificial warrens, and spring. Regarding rabbit abundance, in addition to artificial warrens, soft soils, bushes, and season also had a positive effect. We found that environmental variables, management practices, and season each affect wild rabbit presence and abundance differently at a home range scale in low-density population. Thus, our major recommendations are reducing the distance to artificial warrens and ecotone, ideally to less than 100 m, and promoting habitat quality improvement on slopes with plenty of sun exposure

    On the role of v-ATPase V0a1-dependent degradation in Alzheimer disease

    No full text
    Defective autophagy and lysosomal degradation are hallmarks of numerous neurodegenerative disorders. Vesicular ATPases are intracellular proton pumps that acidify autophagosomes and lysosomes. V0a1 is a key component of the v-ATPase that is only required in neurons in Drosophila melanogaster. We have recently shown that loss of V0a1 in Drosophila photoreceptor neurons leads to slow, adult-onset degeneration.1 Concurrently, Lee et al.2 reported that V0a1 fails to localize to lysosomal compartments in cells from Presenilin 1 knock-out cells. Together these two reports suggest that a neuronal V0a1-dependent degradation mechanism may be causally linked to Alzheimer pathology. Indeed, we now show that loss of V0a1 makes Drosophila neurons more susceptible to insult with human Alzheimer-related neurotoxic Aβ and tau proteins. Furthermore, we discuss the potential significance of the discovery of the neuron-specific degradation mechanism in Drosophila for intracellular degradation defects in Alzheimer Disease

    Human intellectual disability genes form conserved functional modules in Drosophila

    Get PDF
    Contains fulltext : 124936.pdf (publisher's version ) (Open Access)Intellectual Disability (ID) disorders, defined by an IQ below 70, are genetically and phenotypically highly heterogeneous. Identification of common molecular pathways underlying these disorders is crucial for understanding the molecular basis of cognition and for the development of therapeutic intervention strategies. To systematically establish their functional connectivity, we used transgenic RNAi to target 270 ID gene orthologs in the Drosophila eye. Assessment of neuronal function in behavioral and electrophysiological assays and multiparametric morphological analysis identified phenotypes associated with knockdown of 180 ID gene orthologs. Most of these genotype-phenotype associations were novel. For example, we uncovered 16 genes that are required for basal neurotransmission and have not previously been implicated in this process in any system or organism. ID gene orthologs with morphological eye phenotypes, in contrast to genes without phenotypes, are relatively highly expressed in the human nervous system and are enriched for neuronal functions, suggesting that eye phenotyping can distinguish different classes of ID genes. Indeed, grouping genes by Drosophila phenotype uncovered 26 connected functional modules. Novel links between ID genes successfully predicted that MYCN, PIGV and UPF3B regulate synapse development. Drosophila phenotype groups show, in addition to ID, significant phenotypic similarity also in humans, indicating that functional modules are conserved. The combined data indicate that ID disorders, despite their extreme genetic diversity, are caused by disruption of a limited number of highly connected functional modules
    corecore