1,452 research outputs found
Structure comparison of binary and weighted niche-overlap graphs
In ecological networks, niche-overlap graphs are considered as complex systems. They represent the competition between two predators that share common resources. The purpose of this paper is to investigate the structural properties of these graphs considered as weighted networks and compare their measures with the ones calculated for the binary networks. To conduct this study, we select four classical network measures : the degree of nodes, the clustering coefficient, the assortativity, and the betweenness centrality. These measures were used to analyse different type of networks such as social networks, biological networks, world wide web, etc. Interestingly, we identify significant differences between the structure of the binary and the weighted niche-overlap graphs. This study indicates that weight information reveals different features that may provide other implications on the dynamics of these networks
MAP: Microblogging Assisted Profiling of TV Shows
Online microblogging services that have been increasingly used by people to
share and exchange information, have emerged as a promising way to profiling
multimedia contents, in a sense to provide users a socialized abstraction and
understanding of these contents. In this paper, we propose a microblogging
profiling framework, to provide a social demonstration of TV shows. Challenges
for this study lie in two folds: First, TV shows are generally offline, i.e.,
most of them are not originally from the Internet, and we need to create a
connection between these TV shows with online microblogging services; Second,
contents in a microblogging service are extremely noisy for video profiling,
and we need to strategically retrieve the most related information for the TV
show profiling.To address these challenges, we propose a MAP, a
microblogging-assisted profiling framework, with contributions as follows: i)
We propose a joint user and content retrieval scheme, which uses information
about both actors and topics of a TV show to retrieve related microblogs; ii)
We propose a social-aware profiling strategy, which profiles a video according
to not only its content, but also the social relationship of its microblogging
users and its propagation in the social network; iii) We present some
interesting analysis, based on our framework to profile real-world TV shows
The brainstem reticular formation is a small-world, not scale-free, network
Recently, it has been demonstrated that several complex systems may have simple graph-theoretic characterizations as so-called ‘small-world’ and ‘scale-free’ networks. These networks have also been applied to the gross neural connectivity between primate cortical areas and the nervous system of Caenorhabditis elegans. Here, we extend this work to a specific neural circuit of the vertebrate brain—the medial reticular formation (RF) of the brainstem—and, in doing so, we have made three key contributions. First, this work constitutes the first model (and quantitative review) of this important brain structure for over three decades. Second, we have developed the first graph-theoretic analysis of vertebrate brain connectivity at the neural network level. Third, we propose simple metrics to quantitatively assess the extent to which the networks studied are small-world or scale-free. We conclude that the medial RF is configured to create small-world (implying coherent rapid-processing capabilities), but not scale-free, type networks under assumptions which are amenable to quantitative measurement
Statistical and Dynamical Study of Disease Propagation in a Small World Network
We study numerically statistical properties and dynamical disease propagation
using a percolation model on a one dimensional small world network. The
parameters chosen correspond to a realistic network of school age children. We
found that percolation threshold decreases as a power law as the short cut
fluctuations increase. We found also the number of infected sites grows
exponentially with time and its rate depends logarithmically on the density of
susceptibles. This behavior provides an interesting way to estimate the
serology for a given population from the measurement of the disease growing
rate during an epidemic phase. We have also examined the case in which the
infection probability of nearest neighbors is different from that of short
cuts. We found a double diffusion behavior with a slower diffusion between the
characteristic times.Comment: 12 pages LaTex, 10 eps figures, Phys.Rev.E Vol. 64, 056115 (2001
Spherical Model in a Random Field
We investigate the properties of the Gibbs states and thermodynamic
observables of the spherical model in a random field. We show that on the
low-temperature critical line the magnetization of the model is not a
self-averaging observable, but it self-averages conditionally. We also show
that an arbitrarily weak homogeneous boundary field dominates over fluctuations
of the random field once the model transits into a ferromagnetic phase. As a
result, a homogeneous boundary field restores the conventional self-averaging
of thermodynamic observables, like the magnetization and the susceptibility. We
also investigate the effective field created at the sites of the lattice by the
random field, and show that at the critical temperature of the spherical model
the effective field undergoes a transition into a phase with long-range
correlations .Comment: 29 page
Cross-over behaviour in a communication network
We address the problem of message transfer in a communication network. The
network consists of nodes and links, with the nodes lying on a two dimensional
lattice. Each node has connections with its nearest neighbours, whereas some
special nodes, which are designated as hubs, have connections to all the sites
within a certain area of influence. The degree distribution for this network is
bimodal in nature and has finite variance. The distribution of travel times
between two sites situated at a fixed distance on this lattice shows fat
fractal behaviour as a function of hub-density. If extra assortative
connections are now introduced between the hubs so that each hub is connected
to two or three other hubs, the distribution crosses over to power-law
behaviour. Cross-over behaviour is also seen if end-to-end short cuts are
introduced between hubs whose areas of influence overlap, but this is much
milder in nature. In yet another information transmission process, namely, the
spread of infection on the network with assortative connections, we again
observed cross-over behaviour of another type, viz. from one power-law to
another for the threshold values of disease transmission probability. Our
results are relevant for the understanding of the role of network topology in
information spread processes.Comment: 12 figure
25th-order high-temperature expansion results for three-dimensional Ising-like systems on the simple cubic lattice
25th-order high-temperature series are computed for a general
nearest-neighbor three-dimensional Ising model with arbitrary potential on the
simple cubic lattice. In particular, we consider three improved potentials
characterized by suppressed leading scaling corrections. Critical exponents are
extracted from high-temperature series specialized to improved potentials,
obtaining , , ,
, , . Moreover, biased
analyses of the 25th-order series of the standard Ising model provide the
estimate for the exponent associated with the leading scaling
corrections. By the same technique, we study the small-magnetization expansion
of the Helmholtz free energy. The results are then applied to the construction
of parametric representations of the critical equation of state, using a
systematic approach based on a global stationarity condition. Accurate
estimates of several universal amplitude ratios are also presented.Comment: 40 pages, 15 figure
Universality of the Crossing Probability for the Potts Model for q=1,2,3,4
The universality of the crossing probability of a system to
percolate only in the horizontal direction, was investigated numerically by
using a cluster Monte-Carlo algorithm for the -state Potts model for
and for percolation . We check the percolation through
Fortuin-Kasteleyn clusters near the critical point on the square lattice by
using representation of the Potts model as the correlated site-bond percolation
model. It was shown that probability of a system to percolate only in the
horizontal direction has universal form for
as a function of the scaling variable . Here,
is the probability of a bond to be closed, is the
nonuniversal crossing amplitude, is the nonuniversal metric factor,
is the nonuniversal scaling index, is the correlation
length index.
The universal function . Nonuniversal scaling factors
were found numerically.Comment: 15 pages, 3 figures, revtex4b, (minor errors in text fixed,
journal-ref added
Cumulant ratios and their scaling functions for Ising systems in strip geometries
We calculate the fourth-order cumulant ratio (proposed by Binder) for the
two-dimensional Ising model in a strip geometry L x oo. The Density Matrix
Renormalization Group method enables us to consider typical open boundary
conditions up to L=200. Universal scaling functions of the cumulant ratio are
determined for strips with parallel as well as opposing surface fields.Comment: 4 pages, RevTex, one .eps figure; references added, format change
Punctuated equilibria and 1/f noise in a biological coevolution model with individual-based dynamics
We present a study by linear stability analysis and large-scale Monte Carlo
simulations of a simple model of biological coevolution. Selection is provided
through a reproduction probability that contains quenched, random interspecies
interactions, while genetic variation is provided through a low mutation rate.
Both selection and mutation act on individual organisms. Consistent with some
current theories of macroevolutionary dynamics, the model displays
intermittent, statistically self-similar behavior with punctuated equilibria.
The probability density for the lifetimes of ecological communities is well
approximated by a power law with exponent near -2, and the corresponding power
spectral densities show 1/f noise (flicker noise) over several decades. The
long-lived communities (quasi-steady states) consist of a relatively small
number of mutualistically interacting species, and they are surrounded by a
``protection zone'' of closely related genotypes that have a very low
probability of invading the resident community. The extent of the protection
zone affects the stability of the community in a way analogous to the height of
the free-energy barrier surrounding a metastable state in a physical system.
Measures of biological diversity are on average stationary with no discernible
trends, even over our very long simulation runs of approximately 3.4x10^7
generations.Comment: 20 pages RevTex. Minor revisions consistent with published versio
- …