37,237 research outputs found

    Blocking and Persistence in the Zero-Temperature Dynamics of Homogeneous and Disordered Ising Models

    Full text link
    A ``persistence'' exponent theta has been extensively used to describe the nonequilibrium dynamics of spin systems following a deep quench: for zero-temperature homogeneous Ising models on the d-dimensional cubic lattice, the fraction p(t) of spins not flipped by time t decays to zero like t^[-theta(d)] for low d; for high d, p(t) may decay to p(infinity)>0, because of ``blocking'' (but perhaps still like a power). What are the effects of disorder or changes of lattice? We show that these can quite generally lead to blocking (and convergence to a metastable configuration) even for low d, and then present two examples --- one disordered and one homogeneous --- where p(t) decays exponentially to p(infinity).Comment: 8 pages (LaTeX); to appear in Physical Review Letter

    Interfaces (and Regional Congruence?) in Spin Glasses

    Full text link
    We present a general theorem restricting properties of interfaces between thermodynamic states and apply it to the spin glass excitations observed numerically by Krzakala-Martin and Palassini-Young in spatial dimensions d=3 and 4. We show that such excitations, with interface dimension smaller than d, cannot yield regionally congruent thermodynamic states. More generally, zero density interfaces of translation-covariant excitations cannot be pinned (by the disorder) in any d but rather must deflect to infinity in the thermodynamic limit. Additional consequences concerning regional congruence in spin glasses and other systems are discussed.Comment: 4 pages (ReVTeX); 1 figure; submitted to Physical Review Letter

    Response of strongly-interacting matter to magnetic field: some exact results

    Full text link
    We derive some exact results concerning the response of strongly-interacting matter to external magnetic fields. Our results come from consideration of triangle anomalies in medium. First, we define an "axial magnetic susceptibility," then we examine its beahvior in two flavor QCD via response theory. In the chirally restored phase, this quantity is proportional to the fermion chemical potential, while in the phase of broken chiral symmetry it can be related, through triangle anomalies, to an in-medium amplitude for the neutral pion to decay to two photons. We confirm the latter result by calculation in a linear sigma model, where this amplitude is already known in the literature.Comment: 13 pages, no figures, To be submitted to Physical Review D, fixed an omitted referenc

    Uniqueness of Ground States for Short-Range Spin Glasses in the Half-Plane

    Full text link
    We consider the Edwards-Anderson Ising spin glass model on the half-plane Z×Z+Z \times Z^+ with zero external field and a wide range of choices, including mean zero Gaussian, for the common distribution of the collection J of i.i.d. nearest neighbor couplings. The infinite-volume joint distribution K(J,α)K(J,\alpha) of couplings J and ground state pairs α\alpha with periodic (respectively, free) boundary conditions in the horizontal (respectively, vertical) coordinate is shown to exist without need for subsequence limits. Our main result is that for almost every J, the conditional distribution K(αJ)K(\alpha|J) is supported on a single ground state pair.Comment: 20 pages, 3 figure

    Realistic spin glasses below eight dimensions: a highly disordered view

    Full text link
    By connecting realistic spin glass models at low temperature to the highly disordered model at zero temperature, we argue that ordinary Edwards-Anderson spin glasses below eight dimensions have at most a single pair of physically relevant pure states at nonzero low temperature. Less likely scenarios that evade this conclusion are also discussed.Comment: 18 pages (RevTeX; 1 figure; to appear in Physical Review E

    Simplicity of State and Overlap Structure in Finite-Volume Realistic Spin Glasses

    Full text link
    We present a combination of heuristic and rigorous arguments indicating that both the pure state structure and the overlap structure of realistic spin glasses should be relatively simple: in a large finite volume with coupling-independent boundary conditions, such as periodic, at most a pair of flip-related (or the appropriate number of symmetry-related in the non-Ising case) states appear, and the Parisi overlap distribution correspondingly exhibits at most a pair of delta-functions at plus/minus the self-overlap. This rules out the nonstandard SK picture introduced by us earlier, and when combined with our previous elimination of more standard versions of the mean field picture, argues against the possibility of even limited versions of mean field ordering in realistic spin glasses. If broken spin flip symmetry should occur, this leaves open two main possibilities for ordering in the spin glass phase: the droplet/scaling two-state picture, and the chaotic pairs many-state picture introduced by us earlier. We present scaling arguments which provide a possible physical basis for the latter picture, and discuss possible reasons behind numerical observations of more complicated overlap structures in finite volumes.Comment: 22 pages (LaTeX; needs revtex), 1 figure (PostScript); to appear in Physical Review

    Measurement of the interaction strength in a Bose-Fermi mixture with 87Rb and 40K

    Full text link
    A quantum degenerate, dilute gas mixture of bosonic and fermionic atoms was produced using 87Rb and 40K. The onset of degeneracy was confirmed by observing the spatial distribution of the gases after time-of-flight expansion. Further, the magnitude of the interspecies scattering length between the doubly spin polarized states of 87Rb and 40K, |a_RbK|, was determined from cross-dimensional thermal relaxation. The uncertainty in this collision measurement was greatly reduced by taking the ratio of interspecies and intraspecies relaxation rates, yielding |a_RbK| = 250 +/- 30 a_0, which is a lower value than what was reported in [M. Modugno et al., Phys. Rev. A 68, 043626 (2003)]. Using the value for |a_RbK| reported here, current T=0 theory would predict a threshold for mechanical instability that is inconsistent with the experimentally observed onset for sudden loss of fermions in [G. Modugno et al., Science 297, 2240 (2002)].Comment: RevTeX4 + 4 eps figures; Replaced with published versio

    Identity and Search in Social Networks

    Full text link
    Social networks have the surprising property of being "searchable": Ordinary people are capable of directing messages through their network of acquaintances to reach a specific but distant target person in only a few steps. We present a model that offers an explanation of social network searchability in terms of recognizable personal identities: sets of characteristics measured along a number of social dimensions. Our model defines a class of searchable networks and a method for searching them that may be applicable to many network search problems, including the location of data files in peer-to-peer networks, pages on the World Wide Web, and information in distributed databases.Comment: 4 page, 3 figures, revte
    corecore