2,276 research outputs found
Many Uninsured Children Qualify for Medi-Cal or Healthy Families
Examines the public health insurance eligibility of children in California who did not have health insurance coverage for some or all of the year in 2002, to highlight the geographic variations in children's uninsured eligibility rates
A Simple Model of Epidemics with Pathogen Mutation
We study how the interplay between the memory immune response and pathogen
mutation affects epidemic dynamics in two related models. The first explicitly
models pathogen mutation and individual memory immune responses, with contacted
individuals becoming infected only if they are exposed to strains that are
significantly different from other strains in their memory repertoire. The
second model is a reduction of the first to a system of difference equations.
In this case, individuals spend a fixed amount of time in a generalized immune
class. In both models, we observe four fundamentally different types of
behavior, depending on parameters: (1) pathogen extinction due to lack of
contact between individuals, (2) endemic infection (3) periodic epidemic
outbreaks, and (4) one or more outbreaks followed by extinction of the epidemic
due to extremely low minima in the oscillations. We analyze both models to
determine the location of each transition. Our main result is that pathogens in
highly connected populations must mutate rapidly in order to remain viable.Comment: 9 pages, 11 figure
Improving Fermi Orbit Determination and Prediction in an Uncertain Atmospheric Drag Environment
Orbit determination and prediction of the Fermi Gamma-ray Space Telescope trajectory is strongly impacted by the unpredictability and variability of atmospheric density and the spacecraft's ballistic coefficient. Operationally, Global Positioning System point solutions are processed with an extended Kalman filter for orbit determination, and predictions are generated for conjunction assessment with secondary objects. When these predictions are compared to Joint Space Operations Center radar-based solutions, the close approach distance between the two predictions can greatly differ ahead of the conjunction. This work explores strategies for improving prediction accuracy and helps to explain the prediction disparities. Namely, a tuning analysis is performed to determine atmospheric drag modeling and filter parameters that can improve orbit determination as well as prediction accuracy. A 45% improvement in three-day prediction accuracy is realized by tuning the ballistic coefficient and atmospheric density stochastic models, measurement frequency, and other modeling and filter parameters
Imaging Microwave Electric Fields Using a Near-Field Scanning Microwave Microscope
By scanning a fine open-ended coaxial probe above an operating microwave
device, we image local electric fields generated by the device at microwave
frequencies. The probe is sensitive to the electric flux normal to the face of
its center conductor, allowing different components of the field to be imaged
by orienting the probe appropriately. Using a simple model of the microscope,
we are able to interpret the system's output and determine the magnitude of the
electric field at the probe tip. We show images of electric field components
above a copper microstrip transmission line driven at 8 GHz, with a spatial
resolution of approximately 200 m.Comment: 10 pages, 3 eps-figures, accepted by Appl. Phys. Let
Community perceptions link environmental decline to reduced support for tourism development in small island states: A case study in the Turks and Caicos Islands
Increasing tourism and population growth, exacerbated by migration, are placing pressure on the health and resilience of natural resources worldwide. This is evident in complex tropical coastal systems, particularly Small Island and Small Island Developing States (SIDS), where limited resources, fragile environments and climate change risk result in sustainable development challenges. The relationship between residents' perceived impacts of tourism, marine resource health, and support for future development was investigated through face-to-face semi-structured interviews with 57 stakeholders, including heads of households, fishers and those working in the tourism sector, on the Island of Grand Turk (Turks and Caicos Islands). Perceptions of the economic, social and environmental impact of tourism were not significantly associated with residents' socio-demographics. However, Turks and Caicos nationals were significantly more likely to support future tourism development than non-nationals. Residents that linked tourism with environmental degradation showed significantly reduced support for tourism development. Proposed developments which promote overnight tourism were viewed most positively by respondents highlighting a need for strategic growth of the tourism sector to consider income generation outside of the cruise terminal. Results highlight the need for more balanced consideration of the effects of tourism on socio-economic factors along with environmental considerations in communities highly depended on marine resources. Thus, context-specific understanding of residents’ perceptions and how this might influence support for future development is vital to building policies that are reflective of local priorities
Breaking the Curve with CANDELS: A Bayesian Approach to Reveal the Non-Universality of the Dust-Attenuation Law at High Redshift
Dust attenuation affects nearly all observational aspects of galaxy
evolution, yet very little is known about the form of the dust-attenuation law
in the distant Universe. Here, we model the spectral energy distributions
(SEDs) of galaxies at z = 1.5--3 from CANDELS with rest-frame UV to near-IR
imaging under different assumptions about the dust law, and compare the amount
of inferred attenuated light with the observed infrared (IR) luminosities. Some
individual galaxies show strong Bayesian evidence in preference of one dust law
over another, and this preference agrees with their observed location on the
plane of infrared excess (IRX, ) and UV slope
(). We generalize the shape of the dust law with an empirical model,
where
is the dust law of Calzetti et al. (2000), and show that there
exists a correlation between the color excess and tilt with
+ . Galaxies with high
color excess have a shallower, starburst-like law, and those with low color
excess have a steeper, SMC-like law. Surprisingly, the galaxies in our sample
show no correlation between the shape of the dust law and stellar mass,
star-formation rate, or . The change in the dust law with color excess
is consistent with a model where attenuation is caused by by scattering, a
mixed star-dust geometry, and/or trends with stellar population age,
metallicity, and dust grain size. This rest-frame UV-to-near-IR method shows
potential to constrain the dust law at even higher () redshifts.Comment: 20 pages, 18 figures, resubmitted to Ap
Mobilisation thresholds for coral rubble and consequences for windows of reef recovery
The proportional cover of rubble on reefs is predicted to increase as disturbances increase in intensity and frequency. Unstable rubble can kill coral recruits and impair binding processes that transform rubble into a stable substrate for coral recruitment. A clearer understanding of the mechanisms of inhibited coral recovery on rubble requires characterisation of the hydrodynamic conditions that trigger rubble mobilisation. Here, we investigated rubble mobilisation under regular wave conditions in a wave flume and irregular wave conditions in situ on a coral reef in the Maldives. We examined how changes in near-bed wave orbital velocity influenced the likelihood of rubble motion (e.g. rocking) and transport (by walking, sliding or flipping). Rubble mobilisation was considered as a function of rubble length, branchiness (branched vs. unbranched) and underlying substrate (rubble vs. sand). The effect of near-bed wave orbital velocity on rubble mobilisation was comparable between flume and reef observations. As near-bed wave orbital velocity increased, rubble was more likely to rock, be transported and travel greater distances. Averaged across length, branchiness and substrate, loose rubble had a 50 % chance of transport when near-bed wave orbital velocities reached 0.30 m s−1 in both the wave flume and on the reef. However, small and/or unbranched rubble pieces were generally mobilised more and at lower velocities than larger, branched rubble. Rubble also travelled further distances per day (∼2 cm) on substrates composed of sand than rubble. Importantly, if rubble was interlocked, it was very unlikely to move (< 7 % chance) even at the highest velocity tested (0.4 m s−1). Furthermore, the probability of rubble transport declined over 3 d deployments in the field, suggesting rubble had snagged or settled into more hydrodynamically stable positions within the first days of deployment. We expect that snagged or settled rubble is transported more commonly in locations with higher-energy events and more variable wave environments. At our field site in the Maldives, we expect recovery windows for binding (when rubble is stable) to predominantly occur during the calmer north-eastern monsoon when wave energy impacting the atoll is less and wave heights are smaller. Our results show that rubble beds comprised of small rubble pieces and/or pieces with fewer branches are more likely to have shorter windows of recovery (stability) between mobilisation events, and thus be good candidates for rubble stabilisation interventions to enhance coral recruitment and binding.</p
Random Geometric Graphs
We analyse graphs in which each vertex is assigned random coordinates in a
geometric space of arbitrary dimensionality and only edges between adjacent
points are present. The critical connectivity is found numerically by examining
the size of the largest cluster. We derive an analytical expression for the
cluster coefficient which shows that the graphs are distinctly different from
standard random graphs, even for infinite dimensionality. Insights relevant for
graph bi-partitioning are included.Comment: 16 pages, 10 figures. Minor changes. Added reference
Are randomly grown graphs really random?
We analyze a minimal model of a growing network. At each time step, a new
vertex is added; then, with probability delta, two vertices are chosen
uniformly at random and joined by an undirected edge. This process is repeated
for t time steps. In the limit of large t, the resulting graph displays
surprisingly rich characteristics. In particular, a giant component emerges in
an infinite-order phase transition at delta = 1/8. At the transition, the
average component size jumps discontinuously but remains finite. In contrast, a
static random graph with the same degree distribution exhibits a second-order
phase transition at delta = 1/4, and the average component size diverges there.
These dramatic differences between grown and static random graphs stem from a
positive correlation between the degrees of connected vertices in the grown
graph--older vertices tend to have higher degree, and to link with other
high-degree vertices, merely by virtue of their age. We conclude that grown
graphs, however randomly they are constructed, are fundamentally different from
their static random graph counterparts.Comment: 8 pages, 5 figure
- …