192 research outputs found

    The SFR-M <sub>∗</sub> Correlation Extends to Low Mass at High Redshift

    Get PDF
    To achieve a fuller understanding of galaxy evolution, SED fitting can be used to recover quantities beyond stellar masses (M_*) and star formation rates (SFRs). We use Star Formation Histories (SFHs) reconstructed via the Dense Basis method of Iyer \& Gawiser (2017) for a sample of 17,87317,873 galaxies at 0.5<z<60.5<z<6 in the CANDELS GOODS-S field to study the nature and evolution of the SFR-M_* correlation. The reconstructed SFHs represent trajectories in SFR-M_* space, enabling us to study galaxies at epochs earlier than observed by propagating them backwards in time along these trajectories. We study the SFR-M_* correlation at z=1,2,3,4,5,6z=1,2,3,4,5,6 using both direct fits to galaxies observed at those epochs and SFR-M_* trajectories of galaxies observed at lower redshifts. The SFR-M_* correlations obtained using the two approaches are found to be consistent with each other through a KS test. Validation tests using SFHs from semi-analytic models and cosmological hydrodynamical simulations confirm the sensitivity of the method to changes in the slope, normalization and shape of the SFR-M_* correlation. This technique allows us to further probe the low-mass regime of the correlation at high-z by 1\sim 1 dex and over an effective volume of 10×\sim 10\times larger than possible with just direct fits. We find that the SFR-M_* correlation is consistent with being linear down to M107M_*\sim 10^7 M_\odot at z>4z>4. The evolution of the correlation is well described by logSFR=(0.80±0.0290.017±0.010×tuniv)logM\log SFR= (0.80\pm 0.029 - 0.017\pm 0.010\times t_{univ})\log M_* (6.487±0.2820.039±0.008×tuniv)- (6.487\pm 0.282-0.039\pm 0.008\times t_{univ}), where tunivt_{univ} is the age of the universe in Gyr.Comment: 22 pages, 10 figures. Accepted for publication in Ap

    Stellar Mass--Gas-phase Metallicity Relation at 0.5z0.70.5\leq z\leq0.7: A Power Law with Increasing Scatter toward the Low-mass Regime

    Get PDF
    We present the stellar mass (MM_{*})--gas-phase metallicity relation (MZR) and its scatter at intermediate redshifts (0.5z0.70.5\leq z\leq0.7) for 1381 field galaxies collected from deep spectroscopic surveys. The star formation rate (SFR) and color at a given MM_{*} of this magnitude-limited (R24R\lesssim24 AB) sample are representative of normal star-forming galaxies. For masses below 109M10^9 M_\odot, our sample of 237 galaxies is \sim10 times larger than those in previous studies beyond the local universe. This huge gain in sample size enables superior constraints on the MZR and its scatter in the low-mass regime. We find a power-law MZR at 108M<M<1011M10^{8} M_\odot < M_{*} < 10^{11} M_\odot: 12+log(O/H)=(5.83±0.19)+(0.30±0.02)log(M/M){12+log(O/H) = (5.83\pm0.19) + (0.30\pm0.02)log(M_{*}/M_\odot)}. Our MZR shows good agreement with others measured at similar redshifts in the literature in the intermediate and massive regimes, but is shallower than the extrapolation of the MZRs of others to masses below 109M10^{9} M_\odot. The SFR dependence of the MZR in our sample is weaker than that found for local galaxies (known as the Fundamental Metallicity Relation). Compared to a variety of theoretical models, the slope of our MZR for low-mass galaxies agrees well with predictions incorporating supernova energy-driven winds. Being robust against currently uncertain metallicity calibrations, the scatter of the MZR serves as a powerful diagnostic of the stochastic history of gas accretion, gas recycling, and star formation of low-mass galaxies. Our major result is that the scatter of our MZR increases as MM_{*} decreases. Our result implies that either the scatter of the baryonic accretion rate or the scatter of the MM_{*}--MhaloM_{halo} relation increases as MM_{*} decreases. Moreover, our measures of scatter at z=0.7z=0.7 appears consistent with that found for local galaxies.Comment: 18 pages, 10 figures. Accepted by ApJ. Typos correcte

    Neurophysiology

    Get PDF
    Contains reports on twenty research projects.Bell Laboratories (Grant)National Institutes of Health (Grant 5 R01 EY01149-03S2)National Institutes of Health (Grant 5 TO1 EY00090-04)National Institutes of Health (Grant 5 RO1 NS12307-03)National Institutes of Health (Grant K04 NS00010)National Multiple Sclerosis Society (Grant RG-1133-A-1)Health Sciences Fund (Grant 78-10

    CANDELS Multi-wavelength Catalogs: Source Detection and Photometry in the GOODS-South Field

    Get PDF
    We present a UV-to-mid infrared multi-wavelength catalog in the CANDELS/GOODS-S field, combining the newly obtained CANDELS HST/WFC3 F105W, F125W, and F160W data with existing public data. The catalog is based on source detection in the WFC3 F160W band. The F160W mosaic includes the data from CANDELS deep and wide observations as well as previous ERS and HUDF09 programs. The mosaic reaches a 5σ\sigma limiting depth (within an aperture of radius 0.17 arcsec) of 27.4, 28.2, and 29.7 AB for CANDELS wide, deep, and HUDF regions, respectively. The catalog contains 34930 sources with the representative 50% completeness reaching 25.9, 26.6, and 28.1 AB in the F160W band for the three regions. In addition to WFC3 bands, the catalog also includes data from UV (U-band from both CTIO/MOSAIC and VLT/VIMOS), optical (HST/ACS F435W, F606W, F775W, F814W, and F850LP), and infrared (HST/WFC3 F098M, VLT/ISAAC Ks, VLT/HAWK-I Ks, and Spitzer/IRAC 3.6, 4.5, 5.8, 8.0 μ\mum) observations. The catalog is validated via stellar colors, comparison with other published catalogs, zeropoint offsets determined from the best-fit templates of the spectral energy distribution of spectroscopically observed objects, and the accuracy of photometric redshifts. The catalog is able to detect unreddened star-forming (passive) galaxies with stellar mass of 10^{10}M_\odot at a 50% completeness level to z\sim3.4 (2.8), 4.6 (3.2), and 7.0 (4.2) in the three regions. As an example of application, the catalog is used to select both star-forming and passive galaxies at z\sim2--4 via the Balmer break. It is also used to study the color--magnitude diagram of galaxies at 0<z<4.Comment: The full resolution article is now published in ApJS (2013, 207, 24). 22 pages, 21 figures, and 5 tables. The catalogue is available on the CANDELS website: http://candels.ucolick.org/data_access/GOODS-S.html MAST: http://archive.stsci.edu/prepds/candels and Rainbow Database: https://arcoiris.ucolick.org/Rainbow_navigator_public and https://rainbowx.fis.ucm.es/Rainbow_navigator_publi

    Waterfowl Spring Migratory Behavior and Avian Influenza Transmission Risk in the Changing Landscape of the East Asian-Australasian Flyway

    Get PDF
    Avian influenza has advanced from a regional concern to a global health issue with significant economic, trade, and public health implications. Wild birds, particularly waterfowl (Anseriformes), are known reservoirs for low-pathogenic avian influenza viruses (AIV) and recent studies have shown their potential in the spread of highly pathogenic forms of virus. East Asia remains an epicenter for the emergence of novel strains of AIV, however, information on movement ecology of waterfowl, and subsequently a clearer understanding of disease transmission risks in this region has been greatly lacking. To address this, we marked two species of wild waterfowl, northern pintail (Anas acuta) and Eurasian wigeon (Anas penelope), with satellite transmitters on their wintering grounds in Hong Kong, China to study the northward spring migration in the East Asian-Australasian Flyway in relation to disease transmission factors. Northern pintail were found to initiate migration 42 days earlier, travel 2,150 km farther, and perform 4.4 more stopovers than Eurasian wigeon. We found both species used similar stopover locations including areas along the Yangtze River near Shanghai, Bohai Bay and Korea Bay in rapidly developing regions of the Yellow Sea, and the Sea of Okhotsk where the species appeared to funnel through a migratory bottleneck. Both species appeared to exhibit strong habitat selection for rice paddies during migration stopovers, a habitat preference which has the potential to influence risks of AIV outbreaks as rapid land use and land cover changes occur throughout China. Both species had greatest association with H5N1 outbreaks during the early stages of migration when they were at lower latitudes. While Eurasian wigeon were not associated with outbreaks after the mean date of wintering ground departures, northern pintail were associated with outbreaks until the majority of individuals departed from the Yellow Sea, a migratory stopover location. Our results show species-level differences in migration timing and behavior for these common and widespread species, demonstrating the need to consider their unique temporal and spatial movement ecology when incorporating wild birds into AIV risk modeling and management

    Measuring Success for a Future Vision: Defining Impact in Science Gateways/Virtual Research Environments

    Get PDF
    Scholars worldwide leverage science gateways/VREs for a wide variety of research and education endeavors spanning diverse scientific fields. Evaluating the value of a given science gateway/VRE to its constituent community is critical in obtaining the financial and human resources necessary to sustain operations and increase adoption in the user community. In this paper, we feature a variety of exemplar science gateways/VREs and detail how they define impact in terms of e.g., their purpose, operation principles, and size of user base. Further, the exemplars recognize that their science gateways/VREs will continuously evolve with technological advancements and standards in cloud computing platforms, web service architectures, data management tools and cybersecurity. Correspondingly, we present a number of technology advances that could be incorporated in next-generation science gateways/VREs to enhance their scope and scale of their operations for greater success/impact. The exemplars are selected from owners of science gateways in the Science Gateways Community Institute (SGCI) clientele in the United States, and from the owners of VREs in the International Virtual Research Environment Interest Group (VRE-IG) of the Research Data Alliance. Thus, community-driven best practices and technology advances are compiled from diverse expert groups with an international perspective to envisage futuristic science gateway/VRE innovations

    Stellar Mass–Gas-Phase Metallicity Relation at 0.5 ≤ \u3cem\u3ez\u3c/em\u3e ≤ 0.7: A Power Law with Increasing Scatter Toward the Low-Mass Regime

    Get PDF
    We present the stellar mass (M*)–gas-phase metallicity relation (MZR) and its scatter at intermediate redshifts (0.5 ≤ z ≤ 0.7) for for 1381 field galaxies collected from deep spectroscopic surveys. The star formation rate (SFR) and color at a given M* of this magnitude-limited (R ≲ 24 AB) sample are representative of normal star-forming galaxies. For masses below 109 M☉ our sample of 237 galaxies is ~10 times larger than those in previous studies beyond the local universe. This huge gain in sample size enables superior constraints on the MZR and its scatter in the low-mass regime. We find a power-law MZR at 108 at M☉ \u3c M* \u3c 1011 M☉: 12 + log(O/H) = (5.83 ± 0.19) + (0.30 ± 0.02) log(M*/M☉). At 109 M☉ \u3c M* \u3c 1010.5 M☉, our MZR shows agreement with others measured at similar redshifts in the literature. Our power-law slope is, however, shallower than the extrapolation of the MZRs of others to masses below 109 M☉. The SFR dependence of the MZR in our sample is weaker than that found for local galaxies (known as the fundamental metallicity relation). Compared to a variety of theoretical models, the slope of our MZR for low-mass galaxies agrees well with predictions incorporating supernova energy-driven winds. Being robust against currently uncertain metallicity calibrations, the scatter of the MZR serves as a powerful diagnostic of the stochastic history of gas accretion, gas recycling, and star formation of low-mass galaxies. Our major result is that the scatter of our MZR increases as M* decreases. Our result implies that either the scatter of the baryonic accretion rate (σ Ṁ) or the scatter of the M* –Mhalo relation (σ SHMR) increases as M* decreases. Moreover, our measure of scatter at z = 0.7 appears consistent with that found for local galaxies. This lack of redshift evolution constrains models of galaxy evolution to have both σ Ṁ and σ SHMR remain unchanged from z = 0.7 to z = 0

    Can burglary prevention be low-carbon and effective? Investigating the environmental performance of burglary prevention measures

    Get PDF
    There has been limited study to date on the environmental impacts of crime prevention measures. We address this shortfall by estimating the carbon footprint associated with the most widely used burglary prevention measures: door locks, window locks, burglar alarms, lighting and CCTV cameras. We compare these footprints with a measure of their effectiveness, the security protection factor, allowing us to identify those measures that are both low-carbon and effective in preventing burglary. Window locks are found to be the most effective and low-carbon measure available individually. Combinations of window locks, door locks, external and indoor lightings are also shown to be effective and low-carbon. Burglar alarms and CCTV do not perform as strongly, with low security against burglary and higher carbon footprints. This information can be used to help inform more sustainable choices of burglary prevention within households as well as for crime prevention product design
    corecore