44,364 research outputs found
On a Classical, Geometric Origin of Magnetic Moments, Spin-Angular Momentum and the Dirac Gyromagnetic Ratio
By treating the real Maxwell Field and real linearized Einstein equations as
being imbedded in complex Minkowski space, one can interpret magnetic moments
and spin-angular momentum as arising from a charge and mass monopole source
moving along a complex world line in the complex Minkowski space. In the
circumstances where the complex center of mass world-line coincides with the
complex center of charge world-line, the gyromagnetic ratio is that of the
Dirac electron.Comment: 17 page
Electromagnetic Dipole Radiation Fields, Shear-Free Congruences and Complex Center of Charge World Lines
We show that for asymptotically vanishing Maxwell fields in Minkowski space
with non-vanishing total charge, one can find a unique geometric structure, a
null direction field, at null infinity. From this structure a unique complex
analytic world-line in complex Minkowski space that can be found and then
identified as the complex center of charge. By ''sitting'' - in an imaginary
sense, on this world-line both the (intrinsic) electric and magnetic dipole
moments vanish. The (intrinsic) magnetic dipole moment is (in some sense)
obtained from the `distance' the complex the world line is from the real space
(times the charge). This point of view unifies the asymptotic treatment of the
dipole moments For electromagnetic fields with vanishing magnetic dipole
moments the world line is real and defines the real (ordinary center of
charge). We illustrate these ideas with the Lienard-Wiechert Maxwell field. In
the conclusion we discuss its generalization to general relativity where the
complex center of charge world-line has its analogue in a complex center of
mass allowing a definition of the spin and orbital angular momentum - the
analogues of the magnetic and electric dipole moments.Comment: 17 page
A study of the understanding and use of social agencies by physicians in a given community
Thesis (M.S.)--Boston Universit
Component sizes in networks with arbitrary degree distributions
We give an exact solution for the complete distribution of component sizes in
random networks with arbitrary degree distributions. The solution tells us the
probability that a randomly chosen node belongs to a component of size s, for
any s. We apply our results to networks with the three most commonly studied
degree distributions -- Poisson, exponential, and power-law -- as well as to
the calculation of cluster sizes for bond percolation on networks, which
correspond to the sizes of outbreaks of SIR epidemic processes on the same
networks. For the particular case of the power-law degree distribution, we show
that the component size distribution itself follows a power law everywhere
below the phase transition at which a giant component forms, but takes an
exponential form when a giant component is present.Comment: 5 pages, 1 figur
The Real Meaning of Complex Minkowski-Space World-Lines
In connection with the study of shear-free null geodesics in Minkowski space,
we investigate the real geometric effects in real Minkowski space that are
induced by and associated with complex world-lines in complex Minkowski space.
It was already known, in a formal manner, that complex analytic curves in
complex Minkowski space induce shear-free null geodesic congruences. Here we
look at the direct geometric connections of the complex line and the real
structures. Among other items, we show, in particular, how a complex world-line
projects into the real Minkowski space in the form of a real shear-free null
geodesic congruence.Comment: 16 page
Twisting Null Geodesic Congruences, Scri, H-Space and Spin-Angular Momentum
The purpose of this work is to return, with a new observation and rather
unconventional point of view, to the study of asymptotically flat solutions of
Einstein equations. The essential observation is that from a given
asymptotically flat space-time with a given Bondi shear, one can find (by
integrating a partial differential equation) a class of asymptotically
shear-free (but, in general, twistiing) null geodesic congruences. The class is
uniquely given up to the arbitrary choice of a complex analytic world-line in a
four-parameter complex space. Surprisingly this parameter space turns out to be
the H-space that is associated with the real physical space-time under
consideration. The main development in this work is the demonstration of how
this complex world-line can be made both unique and also given a physical
meaning. More specifically by forcing or requiring a certain term in the
asymptotic Weyl tensor to vanish, the world-line is uniquely determined and
becomes (by several arguments) identified as the `complex center-of-mass'.
Roughly, its imaginary part becomes identified with the intrinsic spin-angular
momentum while the real part yields the orbital angular momentum.Comment: 26 pages, authors were relisted alphabeticall
Optimization in Gradient Networks
Gradient networks can be used to model the dominant structure of complex
networks. Previous works have focused on random gradient networks. Here we
study gradient networks that minimize jamming on substrate networks with
scale-free and Erd\H{o}s-R\'enyi structure. We introduce structural
correlations and strongly reduce congestion occurring on the network by using a
Monte Carlo optimization scheme. This optimization alters the degree
distribution and other structural properties of the resulting gradient
networks. These results are expected to be relevant for transport and other
dynamical processes in real network systems.Comment: 5 pages, 4 figure
Community detection and graph partitioning
Many methods have been proposed for community detection in networks. Some of
the most promising are methods based on statistical inference, which rest on
solid mathematical foundations and return excellent results in practice. In
this paper we show that two of the most widely used inference methods can be
mapped directly onto versions of the standard minimum-cut graph partitioning
problem, which allows us to apply any of the many well-understood partitioning
algorithms to the solution of community detection problems. We illustrate the
approach by adapting the Laplacian spectral partitioning method to perform
community inference, testing the resulting algorithm on a range of examples,
including computer-generated and real-world networks. Both the quality of the
results and the running time rival the best previous methods.Comment: 5 pages, 2 figure
- …