1,424 research outputs found
Doping driven magnetic instabilities and quantum criticality of NbFe
Using density functional theory we investigate the evolution of the magnetic
ground state of NbFe due to doping by Nb-excess and Fe-excess. We find
that non-rigid-band effects, due to the contribution of Fe-\textit{d} states to
the density of states at the Fermi level are crucial to the evolution of the
magnetic phase diagram. Furthermore, the influence of disorder is important to
the development of ferromagnetism upon Nb doping. These findings give a
framework in which to understand the evolution of the magnetic ground state in
the temperature-doping phase diagram. We investigate the magnetic instabilities
in NbFe. We find that explicit calculation of the Lindhard function,
, indicates that the primary instability is to finite
antiferromagnetism driven by Fermi surface nesting. Total energy
calculations indicate that antiferromagnetism is the ground
state. We discuss the influence of competing and finite
instabilities on the presence of the non-Fermi liquid behavior in
this material.Comment: 8 pages, 7 figure
A new method to measure anatomic knee alignment for large studies of OA: data from the Osteoarthritis Initiative
SummaryObjectiveTo develop and validate a new and improved software method to rapidly determine femur–tibia angle (FTA).MethodsThree readers, two skilled and one unskilled, without any formal medical training, measured FTA in 142 subjects from the Osteoarthritis Initiative (OAI). The reader reliability was assessed using the intra-class correlation coefficient (ICC), root mean square standard deviation (RMSSD), and Bland–Altman plots, comparing the existing and new FTA methods. Gender-specific linear regression assessed the relationship of FTA with the hip–knee–ankle angle (HKA).ResultsThe ICC (RMSSD) for intra- and inter-reader reproducibility of the existing FTA method was 0.96 (0.77°) and 0.92 (1.38°), respectively, and for the new technique was 0.98 (0.25°) and 0.98 (0.37°), with similar results for all three readers. Bland–Altman 95% limits of agreement were greater than ±2° for the existing, and ±1° for the new method. The r-value for the relation of FTA to HKA was 0.68 and 0.72 for the existing and new methods, respectively. Varus (HKA ≤ −2°)/neutral (−2° < HKA < 2°)/valgus (HKA ≥ 2°) alignment based on predicted HKA agreed moderately with measured HKA (weighted kappa = 0.53), and had moderate sensitivity (73%) and specificity (84%) for varus malalignment. The new FTA was related to HKA using a linear equation with a slope of 0.98 and an offset of 4.0°.ConclusionsSince it is largely automated and uses unambiguous anatomical landmarks, the new method is highly reproducible and can be made on a standard posteroanterior (PA) knee radiograph by a relatively unskilled reader
Treatments for peri-menstrual seizures in catamenial epilepsy
We investigate the properties of ten spectral densities relevant for nuclear spin relaxation studies in solids. This is preceded by a brief review of nuclear spin relaxation in solids which includes a discussion of the appropriate spin-dependent interactions and the various relaxation rates which can be measured. Also, the link between nuclear spin relaxation and dielectric relaxation is discussed. Where possible and/or appropriate each of the spectral densities is expressed as a continuous distribution of Bloembergen-Purcell-Pound (or Debye) spectral densities 2ξ /(1 + ξ2 ω2) for nuclear Larmor angular frequency ω and correlation time ξ. The spectral densities are named after their originators or the shape of the distributions of correlation times or both and are (1) Bloembergen-Purcell-Pound or δ-function, (2) Havriliak-Negami, (3) Cole-Cole, (4) Davidson-Cole, (5) Fang, (6) Fuoss-Kirkwood, (7) Bryn Mawr, (8) Wagner or log-Gaussian, (9) log-Lorentzian, and (10) Fröhlich or energy box. The Havriliak-Negami spectral density is related to the Dissado-Hill theory for dielectric relaxation. The spectral densities are expressed in a way which makes them easy to compare with each other and with experimental data. Many plots of the distributions of correlation times and of the spectral densities vs. various correlation times characterizing the distributions are given
Responses of common diving petrel chicks (Pelecanoides urinatrix) to burrow and colony specific odours in a simple wind tunnel
Researchers have previously assumed that common diving petrels (Pelecanoides urinatrix) have a limited sense of smell since they have relatively small olfactory bulbs. A recent study, however, showed that adult diving petrels prefer the scent of their own burrow compared to burrows of other diving petrels, implying that personal scents contribute to the burrow’s odour signature. Because diving petrels appear to be adapted to use olfaction in social contexts, they could be a useful model for investigating how chemically mediated social recognition develops in birds. A first step is to determine whether diving petrel chicks can detect familiar and unfamiliar odours. We compared behavioural responses of chicks to three natural stimuli in a wind tunnel: soil collected from their burrow or colony, and a blank control. During portions of the experiment, chicks turned the least and walked the shortest distances in response to odours from the nest, which is consistent with their sedentary behaviour within the burrow. By contrast, behaviours linked to olfactory search increased when chicks were exposed to blank controls. These results suggest that common diving petrel chicks can detect natural olfactory stimuli before fledging, and lay the foundation for future studies on the role of olfaction in social contexts for this species
- …