509 research outputs found
Understanding how and when personal values foster entrepreneurial behavior: a humane perspective
This study aims to examine the role of entrepreneurial inten-
tions and motivations in the interplay between humane-
oriented personal values and entrepreneurial behavior. Using
data from 593 individuals in 2010 and 2019, we uncover how
and when humane-oriented personal values (conservation and
self-transcendence) lead to self-employment. Results suggest
that entrepreneurial intentions function as a mechanism that
triggers self-employment decisions for individuals with humane-
oriented personal values and that this effect is stronger when
they engage in opportunity-based entrepreneurship. Finally, we
discuss the implications of these findings for the literature on
personal values and the intention-action link.Ministerio de EconomĂa y Competitividad ECO2016-75655-
General-Sum Multi-Agent Continuous Inverse Optimal Control
IEEE Modelling possible future outcomes of robot-human interactions is of importance in the intelligent vehicle and mobile robotics domains. Knowing the reward function that explains the observed behaviour of a human agent is advantageous for modelling the behaviour with Markov Decision Processes (MDPs). However, learning the rewards that determine the observed actions from data is complicated by interactions. We present a novel inverse reinforcement learning(IRL) algorithm that can infer the reward function in multi-agent interactive scenarios. In particular, the agents may act boundedly rational (i.e., sub-optimal), a characteristic that is typical for human decision making. Additionally, every agent optimizes its own reward function which makes it possible to address non-cooperative setups. In contrast to other methods, the algorithm does not rely on reinforcement learning during inference of the parameters of the reward function. We demonstrate that our proposed method accurately infers the ground truth reward function in two-agent interactive experiments
Uncovering the affective turmoil during opportunity recognition and exploitation: a nonlinear approach
This study explores the affective turmoil experienced by nascent entrepreneurs during opportunity recognition and exploitation. Based on the affect circumplex model, we employed nonlinear methods to identify configurations of affect that emerge during these early stages of the entrepreneurial journey. We analyzed data from 50 nascent entrepreneurs using Artificial Neural Networks (ANNs) trained with twenty affect dimensions as input variables and opportunity recognition and opportunity exploitation as outcomes. Results show that nascent entrepreneurs experience different affect configurations during opportunity recognition and exploitation. While four configurations of affect emerged associated with opportunity recognition and exploitation, their nature and importance to the experienced event are significantly different. Specifically, “active screening” is the most important configuration of affect during opportunity recognition, while “vigilant” is the most important during opportunity exploitation. We posit that nonlinear methods can help to uncover the affective turmoil experienced by entrepreneurs during a particular event. These findings provide new insights on how affect associates differently with cognition during the early stages of entrepreneurship.info:eu-repo/semantics/publishedVersio
Recommended from our members
Tokamak Physics Experiment (TPX) power supply design and development
The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This new feature requires a departure from the traditional tokamak power supply schemes. This paper describes the plan for the adaptation of the PPPL/FTR power system facilities to supply TPX. Five major areas are addressed, namely the AC power system, the TF, PF and Fast Plasma Position Control (FPPC) power supplies, and quench protection for the TF and PF systems. Special emphasis is placed on the development of new power supply and protection schemes
Recommended from our members
National Spherical Torus Experiment (NSTX) and Planned Research
The U.S. fusion energy sciences program began in 1996 to increase emphasis on confinement concept innovation. The NSTX [1,2] is being built at PPPL as a national fusion science research facility in response to this emphasis. NSTX is to test fusion science principles of the Spherical Torus (ST) plasmas, which include: (1) High plasma pressure in low magnetic field for high fusion power density, (2) Good energy confinement is a small-size plasma, (3) Nearly fully self-driven (bootstrap) plasma current, (4) Dispersed heat and particle fluxes, and (5) Plasma startup without complicated inboard solenoid magnet. These properties of the ST plasma, if verified, would lead to possible future fusion devices of high fusion performance, small size, feasible power handling, and improved economy. The design of NSTX is depicted in Fig.1. The device is designed to study plasmas with major radius up to 85 cm, minor radius up to 68 cm, elongation up to 2, with flexibility in forming double-null, single-null, and inboard limited plasmas. The nominal operation calls for a toroidal field of 0.3 T for 5 s at the major radius, and a plasma current at 1 MA with q {approximately} 10 at edge. It features a compact center stack containing the inner legs of the toroidal field coils, a full size solenoid capable of delivering 0.6 Wb induction, inboard vacuum vessel, and composite carbon tiles. The center stack can be replaced without disturbing the main device, diagnostics, and auxiliary systems. The vessel will be covered fully with graphite tiles and can be baked to 350 C. Other wall conditioning techniques are also planned
Recommended from our members
Engineering design of the National Spherical Torus Experiment
NSTX is a proof-of-principle experiment aimed at exploring the physics of the ``spherical torus'' (ST) configuration, which is predicted to exhibit more efficient magnetic confinement than conventional large aspect ratio tokamaks, amongst other advantages. The low aspect ratio (R/a, typically 1.2--2 in ST designs compared to 4--5 in conventional tokamaks) decreases the available cross sectional area through the center of the torus for toroidal and poloidal field coil conductors, vacuum vessel wall, plasma facing components, etc., thus increasing the need to deploy all components within the so-called ``center stack'' in the most efficient manner possible. Several unique design features have been developed for the NSTX center stack, and careful engineering of this region of the machine, utilizing materials up to their engineering allowables, has been key to meeting the desired objectives. The design and construction of the machine has been accomplished in a rapid and cost effective manner thanks to the availability of extensive facilities, a strong experience base from the TFTR era, and good cooperation between institutions
A disilene base adduct with a dative Si–Si single bond.
An experimental and theoretical study of the base- stabilized disilene 1 is reported, whichforms at lowtemper- atures in the disproportionation reaction of Si 2 Cl 6 or neo- Si 5 Cl 12 with equimolar amounts of NMe 2 Et. Single-crystal X- ray diffraction and quantum-chemical bonding analysis dis- close an unprecedented structure in silicon chemistry featuring adative Si!Si single bond between two silylene moieties, Me 2 EtN!SiCl 2 !Si(SiCl 3 ) 2 .The central ambiphilic SiCl 2 group is linked by dative bonds to the amine donor and the bis(trichlorosilyl)silylene acceptor,which leads to push–pull stabilization. Based on experimental and theoretical examina- tions aformation mechanism is presented that involves an autocatalytic reaction of the intermediately formed anion Si(SiCl 3 ) 3 ¢ with neo-Si 5 Cl 12 to yield 1
Designed Azolopyridinium Salts Block Protective Antigen Pores In Vitro and Protect Cells from Anthrax Toxin
Background:Several intracellular acting bacterial protein toxins of the AB-type, which are known to enter cells by endocytosis, are shown to produce channels. This holds true for protective antigen (PA), the binding component of the tripartite anthrax-toxin of Bacillus anthracis. Evidence has been presented that translocation of the enzymatic components of anthrax-toxin across the endosomal membrane of target cells and channel formation by the heptameric/octameric PA63 binding/translocation component are related phenomena. Chloroquine and some 4-aminoquinolones, known as potent drugs against Plasmodium falciparium infection of humans, block efficiently the PA63-channel in a dose dependent way.Methodology/Principal Findings:Here we demonstrate that related positively charged heterocyclic azolopyridinium salts block the PA63-channel in the μM range, when both, inhibitor and PA63 are added to the same side of the membrane, the cis-side, which corresponds to the lumen of acidified endosomal vesicles of target cells. Noise-analysis allowed the study of the kinetics of the plug formation by the heterocycles. In vivo experiments using J774A.1 macrophages demonstrated that the inhibitors of PA63-channel function also efficiently block intoxication of the cells by the combination lethal factor and PA63 in the same concentration range as they block the channels in vitro.Conclusions/Significance:These results strongly argue in favor of a transport of lethal factor through the PA63-channel and suggest that the heterocycles used in this study could represent attractive candidates for development of novel therapeutic strategies against anthrax. © 2013 Beitzinger et al
Recommended from our members
The toroidal field coil design for ARIES-ST
An evolutionary process was used to develop the toroidal field (TF) coil design for the ARIES-ST (Spherical Tokamak). Design considerations included fabricability, assembly, maintenance, energy efficiency, and structural robustness. The design addresses a number of the concerns (complexity) and criticisms (high cost, high recirculating power) of fusion. It does this by: (1) Applying advanced, but available laser forming and spray casting techniques for manufacturing the TF coil system; (2) Adopting a simple single toroidal field coil system to make assembly and maintenance much easier, the single turn design avoids the necessity of using the insulation as a structural component of the TF coils, and hence is much more robust than multi-turn designs; and (3) Using a high conductivity copper alloy and modest current densities to keep the recirculating power modest
- …