326 research outputs found

    A Thermodynamical Approach to Quantifying Quantum Correlations

    Get PDF
    We consider the amount of work which can be extracted from a heat bath using a bipartite state shared by two parties. In general it is less then the amount of work extractable when one party is in possession of the entire state. We derive bounds for this "work deficit" and calculate it explicitly for a number of different cases. For pure states the work deficit is exactly equal to the distillable entanglement of the state, and this is also achievable for maximally correlated states. In these cases a form of complementarity exists between physical work which can be extracted and distillable entanglement. The work deficit is a good measure of the quantum correlations in a state and provides a new paradigm for understanding quantum non-locality.Comment: 4 pages, Revtex4, title changed, caveat added to theore

    Globally, plant-soil feedbacks are weak predictors of plant abundance

    Get PDF
    Plant-soil feedbacks (PSFs) have been shown to strongly affect plant performance under controlled conditions, and PSFs are thought to have far reaching consequences for plant population dynamics and the structuring of plant communities. However, thus far the relationship between PSF and plant species abundance in the field is not consistent. Here, we synthesize PSF experiments from tropical forests to semiarid grasslands, and test for a positive relationship between plant abundance in the field and PSFs estimated from controlled bioassays. We meta-analyzed results from 22 PSF experiments and found an overall positive correlation (0.12 <= r over bar <= 0.32) between plant abundance in the field and PSFs across plant functional types (herbaceous and woody plants) but also variation by plant functional type. Thus, our analysis provides quantitative support that plant abundance has a general albeit weak positive relationship with PSFs across ecosystems. Overall, our results suggest that harmful soil biota tend to accumulate around and disproportionately impact species that are rare. However, data for the herbaceous species, which are most common in the literature, had no significant abundance-PSFs relationship. Therefore, we conclude that further work is needed within and across biomes, succession stages and plant types, both under controlled and field conditions, while separating PSF effects from other drivers (e.g., herbivory, competition, disturbance) of plant abundance to tease apart the role of soil biota in causing patterns of plant rarity versus commonness

    Is High Blood Pressure Self-Protection for the Brain?

    Get PDF
    Rationale: Data from animal models of hypertension indicate that high blood pressure may develop as a vital mechanism to maintain adequate blood flow to the brain. We propose that congenital vascular abnormalities of the posterior cerebral circulation and cerebral hypoperfusion could partially explain the etiology of essential hypertension, which remains enigmatic in 95% of patients. Objective: To evaluate the role of the cerebral circulation in the pathophysiology of hypertension. Methods and Results: We completed a series of retrospective and mechanistic case-control magnetic resonance imaging and physiological studies, in normotensive and hypertensive humans (n=259). Interestingly, in humans with hypertension, we report a higher prevalence of congenital cerebrovascular variants; vertebral artery hypoplasia and an incomplete posterior circle of Willis, which were coupled with increased cerebral vascular resistance, reduced cerebral blood flow and a higher incidence of lacunar type infarcts. Causally, cerebral vascular resistance was elevated before the onset of hypertension and elevated sympathetic nerve activity (n=126). Interestingly, untreated hypertensive patients (n=20) had a cerebral blood flow similar to age-matched controls (n=28). However, participants receiving anti-hypertensive therapy (with blood pressure controlled below target levels) had reduced cerebral perfusion (n=19). Finally, elevated cerebral vascular resistance was a predictor of hypertension suggesting it may be a novel prognostic and/or diagnostic marker (n=126). < Conclusions: Our data indicate that congenital cerebrovascular variants in the posterior circulation and the associated cerebral hypoperfusion may be a factor in triggering hypertension. Therefore lowering blood pressure may worsen cerebral perfusion in susceptible individuals

    The Computational Complexity of Generating Random Fractals

    Full text link
    In this paper we examine a number of models that generate random fractals. The models are studied using the tools of computational complexity theory from the perspective of parallel computation. Diffusion limited aggregation and several widely used algorithms for equilibrating the Ising model are shown to be highly sequential; it is unlikely they can be simulated efficiently in parallel. This is in contrast to Mandelbrot percolation that can be simulated in constant parallel time. Our research helps shed light on the intrinsic complexity of these models relative to each other and to different growth processes that have been recently studied using complexity theory. In addition, the results may serve as a guide to simulation physics.Comment: 28 pages, LATEX, 8 Postscript figures available from [email protected]

    NMR investigations of the interaction between the azo-dye sunset yellow and Fluorophenol

    Get PDF
    The interaction of small molecules with larger noncovalent assemblies is important across a wide range of disciplines. Here, we apply two complementary NMR spectroscopic methods to investigate the interaction of various fluorophenol isomers with sunset yellow. This latter molecule is known to form noncovalent aggregates in isotropic solution, and form liquid crystals at high concentrations. We utilize the unique fluorine-19 nucleus of the fluorophenol as a reporter of the interactions via changes in both the observed chemical shift and diffusion coefficients. The data are interpreted in terms of the indefinite self-association model and simple modifications for the incorporation of a second species into an assembly. A change in association mode is tentatively assigned whereby the fluorophenol binds end-on with the sunset yellow aggregates at low concentration and inserts into the stacks at higher concentrations

    Cerebral blood flow response to simulated hypovolemia in essential hypertension a magnetic resonance imaging study

    Get PDF
    Hypertension is associated with raised cerebral vascular resistance and cerebrovascular remodeling. It is currently unclear whether the cerebral circulation can maintain cerebral blood flow (CBF) during reductions in cardiac output (CO) in hypertensive patients thereby avoiding hypoperfusion of the brain. We hypothesized that hypertension would impair the ability to effectively regulate CBF during simulated hypovolemia. In the present study, 39 participants (13 normotensive, 13 controlled, and 13 uncontrolled hypertensives; mean age±SD, 55±10 years) underwent lower body negative pressure (LBNP) at -20, -40, and -50 mmHg to decrease central blood volume. Phase-contrast MR angiography was used to measure flow in the basilar and internal carotid arteries, as well as the ascending aorta. CBF and CO decreased during LBNP (P<0.0001). Heart rate increased during LBNP, reaching significance at -50 mmHg (P<0.0001). There was no change in mean arterial pressure during LBNP (P=0.3). All participants showed similar reductions in CBF (P=0.3, between groups) and CO (P=0.7, between groups) during LBNP. There was no difference in resting CBF between the groups (P=0.36). In summary, during reductions in CO induced by hypovolemic stress, mean arterial pressure is maintained but CBF declines indicating that CBF is dependent on CO in middle-aged normotensive and hypertensive volunteers. Hypertension is not associated with impairments in the CBF response to reduced CO

    Coupling of silicon-vacancy centers to a single crystal diamond cavity

    Get PDF
    Optical coupling of an ensemble of silicon-vacancy (SiV) centers to single-crystal diamond microdisk cavities is demonstrated. The cavities are fabricated from a single-crystal diamond membrane generated by ion implantation and, electrochemical liftoff followed by homo-epitaxial overgrowth. Whispering gallery modes which spectrally overlap with the zero-phonon line (ZPL) of the SiV centers and exhibit quality factors ~2200 are measured. Lifetime reduction from 1.8 ns to 1.48 ns is observed from SiV centers in the cavity compared to those in the membrane outside the cavity. These results are pivotal in developing diamond integrated photonics networks
    • …
    corecore