34,892 research outputs found
Comment on "138La-138Ce-136Ce nuclear cosmochronometer of the supernova neutrino process"
The nuclear chosmochronometer suggested by Hayakawa et al. [Phys. Rev.C 77,
065802 (2008)] based on the 138La-138Ce-136Ce abundance ratio in presolar
grains would be affected by the existence of a hitherto unknown low-energy 1+
state in 138La. Results of a recent high-resolution study of the 138Ba(3He,t)
reaction under kinematics selectively populating 1+ states in 138La through
Gamow-Teller transitions provides strong evidence against the existence of such
a hypothetical state.Comment: Comment on Phys. Rev. C 77, 065802 (2008), submittted to Phys. Rev.
Generation of pulse trains by current-controlled magnetic mirrors
The evolution of a spin-wave packet trapped between two direct
current-carrying wires placed on the surface of a ferrite film is observed by
Brillouin light scattering. The wires act as semi-transparent mirrors confining
the packet. Because the spin-wave energy partially passes through these
mirrors, trains of spin-wave packets are generated outside the trap. A
numerical model of this process is presented and applied to the case when the
current in the wires is dynamically controlled. This dynamical control of the
mirror reflectivity provides new functionalities interesting for the field of
spin-wave logic like that of a spin-wave memory cell.Comment: 4 pages, 3 figure
Theoretical Setting of Inner Reversible Quantum Measurements
We show that any unitary transformation performed on the quantum state of a
closed quantum system, describes an inner, reversible, generalized quantum
measurement. We also show that under some specific conditions it is possible to
perform a unitary transformation on the state of the closed quantum system by
means of a collection of generalized measurement operators. In particular,
given a complete set of orthogonal projectors, it is possible to implement a
reversible quantum measurement that preserves the probabilities. In this
context, we introduce the concept of "Truth-Observable", which is the physical
counterpart of an inner logical truth.Comment: 11 pages. More concise, shortened version for submission to journal.
References adde
Strong entanglement causes low gate fidelity in inaccurate one-way quantum computation
We study how entanglement among the register qubits affects the gate fidelity
in the one-way quantum computation if a measurement is inaccurate. We derive an
inequality which shows that the mean gate fidelity is upper bounded by a
decreasing function of the magnitude of the error of the measurement and the
amount of the entanglement between the measured qubit and other register
qubits. The consequence of this inequality is that, for a given amount of
entanglement, which is theoretically calculated once the algorithm is fixed, we
can estimate from this inequality how small the magnitude of the error should
be in order not to make the gate fidelity below a threshold, which is specified
by a technical requirement in a particular experimental setup or by the
threshold theorem of the fault-tolerant quantum computation.Comment: 4 pages, 3 figure
The Right Mutation Strength for Multi-Valued Decision Variables
The most common representation in evolutionary computation are bit strings.
This is ideal to model binary decision variables, but less useful for variables
taking more values. With very little theoretical work existing on how to use
evolutionary algorithms for such optimization problems, we study the run time
of simple evolutionary algorithms on some OneMax-like functions defined over
. More precisely, we regard a variety of
problem classes requesting the component-wise minimization of the distance to
an unknown target vector . For such problems we see a crucial
difference in how we extend the standard-bit mutation operator to these
multi-valued domains. While it is natural to select each position of the
solution vector to be changed independently with probability , there are
various ways to then change such a position. If we change each selected
position to a random value different from the original one, we obtain an
expected run time of . If we change each selected position
by either or (random choice), the optimization time reduces to
. If we use a random mutation strength with probability inversely proportional to and change
the selected position by either or (random choice), then the
optimization time becomes , bringing down
the dependence on from linear to polylogarithmic. One of our results
depends on a new variant of the lower bounding multiplicative drift theorem.Comment: an extended abstract of this work is to appear at GECCO 201
Electric dipole response of 208Pb from proton inelastic scattering: constraints on neutron skin thickness and symmetry energy
The electric dipole (E1) response of 208Pb has been precisely determined by
measuring Coulomb excitation induced by proton scattering at very forward
angles. The electric dipole polarizability, defined as inverse energy-weighted
sum rule of the E1 strength, has been extracted as 20.1+-0.6 fm^3. The data can
be used to constrain the neutron skin thickness of 208Pb to
0.168(+-0.009)_expt(+-0.013)_theo(+-0.021)_est fm, where the subscript "expt"
refers to the experimental uncertainty, "theor" to the theoretical confidence
band and "est" to the uncertainty associated with the estimation of the
symmetry energy at the saturation density. In addition, a constraint band has
been extracted in the plane of the symmetry energy (J) and its slope parameter
(L) at the saturation density.Comment: 6 pages, 8 figures, revised manuscript submitted to special volume of
Eur. Phys. J. A on symmetry energ
Multiple Scales in the Fine Structure of the Isoscalar Giant Quadrupole Resonance in ^{208}Pb
The fine structure of the isoscalar giant quadrupole resonance in ^{208}Pb,
observed in high-resolution (p,p') and (e,e') experiments, is studied using the
entropy index method. In a novel way, it enables to determine the number of
scales present in the spectra and their magnitude. We find intermediate scales
of fluctuations around 1.1 MeV, 460 keV and 125 keV for an excitation energy
region 0 - 12 MeV. A comparison with scales extracted from second RPA
calculations, which are in good agreement with experiment, shows that they
arise from the internal mixing of collective motion with two particle-two hole
components of the nuclear wavefunction.Comment: 14 pages including 6 figures (to be published in Phys. Lett. B
A Giant Bovine Fetus
A small Holstein cow, age 4 years, was admitted to Stange Memorial Clinic, Feb. 3. 1948. She had been in labor since early that morning
Seroma and Lymphocytoma in a Male Pointer
A 6 year old male Pointer, in fair condition, was admitted to Stange Memorial Clinic Feb. 14, 1947, with a history of an unidentified growth in the left flank region. The swelling, about 5 in. long by 3 in. wide, was very hard and firm when palpated
- …