818 research outputs found

    Unambiguous definition of handedness for locally chiral light

    Get PDF
    Synthetic chiral light fields were recently introduced as a novel source of chirality [Ayuso et al., Nat. Photonics 13, 866 (2019)]. This locally chiral light spans a three-dimensional polarization that plots a chiral trajectory in space-time, leading to huge nonlinear chiral signals upon interactions with chiral media. The degree of chirality of this new form of light was defined, characterized, and shown to be proportional to the chiral signal in high harmonic generation and photo-emission. However, the sign of the light's chirality—its “handedness”—has not yet been defined. Standard definitions of helicity are inapplicable for locally chiral light due to its complex three-dimensional structure. Here, we define an unambiguous handedness for locally chiral fields and employ it in practical calculations

    Selection rules for breaking selection rules

    Get PDF
    Floquet systems often exhibit dynamical symmetries (DS) that govern the time-dependent dynamics and result in selection rules. When a DS is broken, selection rule deviations are expected. Typically, information about the symmetry-breaking perturbation/phase and the time-dependent dynamics can be extracted from these deviations, hence they are regarded as a background free gauge of symmetry breaking. However, to date, DS breaking & selection rule deviations are not described by a general approach, thus there is no universal insight about the interplay between selection rule deviations, the symmetry breaking perturbation, and the broken DS. Here we consider DS breaking in Floquet systems from a general standpoint, formulating a general theory that analytically connects the symmetry-broken and fully symmetric systems. Using an external laser (of arbitrary frequency and polarization), as a model DS breaking perturbation, we discover that the broken symmetry systematically imposes selection rules on the symmetry-broken system, which physically manifest as scaling laws of selection rule deviations. We term these rules 'selection rules for breaking selection rules'—a new concept in physics. We numerically validate the analytical theory in the context of high harmonic generation. Our discovery is a general feature of nonlinear wave-mixing phenomena, and we expect it to apply to any Floquet system (classical & quantum) and to any DS breaking mechanism (either by intrinsic or extrinsic elements of the system)

    Detecting multiple chiral centers in chiral molecules with high harmonic generation

    Get PDF
    Characterizing chiral is highly important for applications in the pharmaceutical industry, as well as in the study of dynamical chemical and biological systems. However, this task has remained challenging, especially due to the ongoing increasing complexity and size of the molecular structure of drugs and active compounds. In particular, large molecules with many active chiral centers are today ubiquitous, but remain difficult to structurally analyze due to their high number of stereoisomers. Here we theoretically explore the sensitivity of high harmonic generation (HHG) to the chiral of molecules with a varying number of active chiral centers. We find that HHG driven by bi-chromatic non-collinear lasers is a sensitive probe for the stereo-configuration of a chiral molecule. We first show through calculations (from benchmark chiral molecules with up to three chiral centers) that the HHG spectrum is imprinted with information about the handedness of each chiral center in the driven molecule. Next, we show that using both classical- and deep-learning-based reconstruction algorithms, the composition of an unknown mixture of stereoisomers can be reconstructed with high fidelity by a single-shot HHG measurement. Our work illustrates how the combination of non-linear optics and machine learning might open routes for ultra-sensitive sensing in chiral systems

    Selection rules in symmetry-broken systems by symmetries in synthetic dimensions

    Get PDF
    Selection rules are often considered a hallmark of symmetry. Here, we employ symmetry-breaking degrees of freedom as synthetic dimensions to demonstrate that symmetry-broken systems systematically exhibit a specific class of symmetries and selection rules. These selection rules constrain the scaling of a system’s observables (non-perturbatively) as it transitions from symmetric to symmetry-broken. Specifically, we drive bi-elliptical high harmonic generation (HHG), and observe that the scaling of the HHG spectrum with the pump’s ellipticities is constrained by selection rules corresponding to symmetries in synthetic dimensions. We then show the generality of this phenomenon by analyzing periodically-driven (Floquet) systems subject to two driving fields, tabulating the resulting synthetic symmetries for (2 + 1)D Floquet groups, and deriving the corresponding selection rules for high harmonic generation (HHG) and other phenomena. The presented class of symmetries and selection rules opens routes for ultrafast spectroscopy of phonon-polarization, spin-orbit coupling, symmetry-protected dark bands, and more

    New photonic conservation laws in parametric nonlinear optics

    Full text link
    Conservation laws are one of the most generic and useful concepts in physics. In nonlinear optical parametric processes, conservation of photonic energy, momenta and parity often lead to selection rules, restricting the allowed polarization and frequencies of the emitted radiation. Here we present a new scheme to derive conservation laws in optical parametric processes in which many photons are annihilated and a single new photon is emitted. We then utilize it to derive two new such conservation laws. Conservation of reflection-parity (RP) arises from a generalized reflection symmetry of the polarization in a superspace, analogous to the superspace employed in the study of quasicrystals. Conservation of space-time-parity (STP) similarly arises from space-time reversal symmetry in superspace. We explore these new conservation laws numerically in the context of high harmonic generation and outline experimental set-ups where they can be tested

    Interlocked attosecond pulse trains in slightly bi-elliptical high harmonic generation

    Get PDF
    The ellipticity of high harmonics driven by bi-chromatic (e.g. w - 2w) fully tuned by varying the polarization of the pump components. In order to start revealing the underlying mechanism of this control, we explore a relatively simple regime of this scheme that still gives rise to full control over the harmonics ellipticities. In this regime, the pumps are only slightly elliptical and the high harmonic radiation consists of two (different) interlocked attosecond pulse trains (APTs). We formulate a semi-analytic model that maps the high harmonic ellipticity to properties of the APTs harmonic decompositions. Utilizing this model, we reconstruct these APTs variables from measurements of the high harmonics ellipticities. This ellipticity-resolved spectroscopy of interlocked APTs may be useful for ultrafast probing of chiral degrees of freedom
    • …
    corecore