13,183 research outputs found

    Relaxation dynamics of multi-level tunneling systems

    Full text link
    A quantum mechanical treatment of an asymmetric double-well potential (DWP) interacting with a heat bath is presented for circumstances where the contribution of higher vibrational levels to the relaxation dynamics cannot be excluded from consideration. The deep quantum limit characterized by a discrete energy spectrum near the barrier top is considered. The investigation is motivated by simulations on a computer glass which show that the considered parameter regime is ``typical'' for DWPs being responsible for the relaxation peak of sound absorption in glasses. Relaxation dynamics resembling the spatial- and energy-diffusion-controlled limit of the classical Kramers' problem, and Arrhenius-like behavior is found under specific conditions.Comment: 23 pages, RevTex, 2 figures can be received from the Authors upon reques

    Kinetics of helium bubble formation in nuclear materials

    Full text link
    The formation and growth of helium bubbles due to self-irradiation in plutonium has been modelled by a discrete kinetic equations for the number densities of bubbles having kk atoms. Analysis of these equations shows that the bubble size distribution function can be approximated by a composite of: (i) the solution of partial differential equations describing the continuum limit of the theory but corrected to take into account the effects of discreteness, and (ii) a local expansion about the advancing leading edge of the distribution function in size space. Both approximations contribute to the memory term in a close integrodifferential equation for the monomer concentration of single helium atoms. The present boundary layer theory for discrete equations is compared to the numerical solution of the full kinetic model and to previous approximation of Schaldach and Wolfer involving a truncated system of moment equations.Comment: 24 pages, 6 figures, to appear in Physica

    Direct observation of superconducting vortex clusters pinned by a periodic array of magnetic dots in ferromagnetic/superconducting hybrid structures

    Full text link
    Strong pinning of superconducting flux quanta by a square array of 1 μ\mum-sized ferromagnetic dots in a magnetic-vortex state was visualized by low-temperature magnetic force microscopy (LT-MFM). A direct correlation of the superconducting flux lines with the positions of the dots was derived. The force that the MFM tip exerts on the individual vortex in the depinning process was used to estimate the spatial modulation of the pinning potential. It was found, that the superconducting vortices which are preferably located on top of the Py dots experience about 15 times stronger pinning forces as compared to the pinning force in the pure Nb film. The strong pinning exceeds the repulsive interaction between the superconducting vortices and allows the vortex clusters to be located at each dot. Our microscopic studies are consistent with global magnetoresistace measurements on these hybrid structures.Comment: 4 pages, 4 figure

    Assignment of grammatical functions in discourse context and word-order ambiguity resolution

    Get PDF
    In German, noun phrases (NPs) can be ambiguously case-marked as nominative (Subject) or accusative (Object). When readers encounter such ambiguous NPs in scrambled word orders they can experience processing difficulties (e.g., Hemforth, 1993; Knöferle, Crocker, Scheepers, & Pickering, 2001). However, what if preceding discourse context provides information for establishing the grammatical function of NPs? This information could influence readers’ interpretation of subsequent NPs. In principle, both the processing of sentences with scrambled and canonical word orders could profit from such contextual focus

    Domain structure of epitaxial Co films with perpendicular anisotropy

    Full text link
    Epitaxial hcp Cobalt films with pronounced c-axis texture have been prepared by pulsed lased deposition (PLD) either directly onto Al2O3 (0001) single crystal substrates or with an intermediate Ruthenium buffer layer. The crystal structure and epitaxial growth relation was studied by XRD, pole figure measurements and reciprocal space mapping. Detailed VSM analysis shows that the perpendicular anisotropy of these highly textured Co films reaches the magnetocrystalline anisotropy of hcp-Co single crystal material. Films were prepared with thickness t of 20 nm < t < 100 nm to study the crossover from in-plane magnetization to out-of-plane magnetization in detail. The analysis of the periodic domain pattern observed by magnetic force microscopy allows to determine the critical minimum thickness below which the domains adopt a pure in-plane orientation. Above the critical thickness the width of the stripe domains is evaluated as a function of the film thickness and compared with domain theory. Especially the discrepancies at smallest film thicknesses show that the system is in an intermediate state between in-plane and out-of-plane domains, which is not described by existing analytical domain models

    Tunneling dynamics of side chains and defects in proteins, polymer glasses, and OH-doped network glasses

    Full text link
    Simulations on a Lennard-Jones computer glass are performed to study effects arising from defects in glasses at low temperatures. The numerical analysis reveals that already a low concentration of defects may dramatically change the low temperature properties by giving rise to extrinsic double-well potentials (DWP's). The main characteristics of these extrinsic DWP's are (i) high barrier heights, (ii) high probability that a defect is indeed connected with an extrinsic DWP, (iii) highly localized dynamics around this defect, and (iv) smaller deformation potential coupling to phonons. Designing an extension of the Standard Tunneling Model (STM) which parametrizes this picture and comparing with ultrasound experiments on the wet network glass aa-B2_2O3_3 shows that effects of OH-impurities are accurately accounted for. This model is then applied to organic polymer glasses and proteins. It is suggested that side groups may act similarly like doped impurities inasmuch as extrinsic DWP's are induced, which possess a distribution of barriers peaked around a high barrier height. This compares with the structurlessly distributed barrier heights of the intrinsic DWP's, which are associated with the backbone dynamics. It is shown that this picture is consistent with elastic measurements on polymers, and can explain anomalous nonlogarithmic line broadening recently observed in hole burning experiments in PMMA.Comment: 34 pages, Revtex, 9 eps-figures, accepted for publication in J. Chem. Phy

    Random matrix theory for CPA: Generalization of Wegner's nn--orbital model

    Full text link
    We introduce a generalization of Wegner's nn-orbital model for the description of randomly disordered systems by replacing his ensemble of Gaussian random matrices by an ensemble of randomly rotated matrices. We calculate the one- and two-particle Green's functions and the conductivity exactly in the limit n→∞n\to\infty. Our solution solves the CPA-equation of the (n=1)(n=1)-Anderson model for arbitrarily distributed disorder. We show how the Lloyd model is included in our model.Comment: 3 pages, Rev-Te

    Wave trains, self-oscillations and synchronization in discrete media

    Full text link
    We study wave propagation in networks of coupled cells which can behave as excitable or self-oscillatory media. For excitable media, an asymptotic construction of wave trains is presented. This construction predicts their shape and speed, as well as the critical coupling and the critical separation of time scales for propagation failure. It describes stable wave train generation by repeated firing at a boundary. In self-oscillatory media, wave trains persist but synchronization phenomena arise. An equation describing the evolution of the oscillator phases is derived.Comment: to appear in Physica D: Nonlinear Phenomen
    • …
    corecore