8 research outputs found

    Angiogenesis in tissue engineering : Breathing life into constructed tissue substitutes

    Get PDF
    Long-term function of three-dimensional (3D) tissue constructs depends on adequate vascularization after implantation. Accordingly, research in tissue engineering has focused on the analysis of angiogenesis. For this purpose, 2 sophisticated in vivo models (the chorioallantoic membrane and the dorsal skinfold chamber) have recently been introduced in tissue engineering research, allowing a more detailed analysis of angiogenic dysfunction and engraftment failure. To achieve vascularization of tissue constructs, several approaches are currently under investigation. These include the modification of biomaterial properties of scaffolds and the stimulation of blood vessel development and maturation by different growth factors using slow-release devices through pre-encapsulated microspheres. Moreover, new microvascular networks in tissue substitutes can be engineered by using endothelial cells and stem cells or by creating arteriovenous shunt loops. Nonetheless, the currently used techniques are not sufficient to induce the rapid vascularization necessary for an adequate cellular oxygen supply. Thus, future directions of research should focus on the creation of microvascular networks within 3D tissue constructs in vitro before implantation or by co-stimulation of angiogenesis and parenchymal cell proliferation to engineer the vascularized tissue substitute in situ

    Utilization of a genetically modified muscle flap for local BMP-2 production and its effects on bone healing: a histomorphometric and radiological study in a rat model

    No full text
    Aim of the study We developed an experimental rat model to explore the possibility of enhancing the healing of critical-size bone defects. The aim of this study was to demonstrate the feasibility of this concept by achieving high local BMP-2 expression via a transduced muscle flap that would facilitate bony union while minimizing systemic sequelae. Methods The transduction potential of the adenoviral vector encoding for BMP-2 was tested in different cell lines in vitro. In vivo experiments consisted of harvesting a pedicled quadriceps femoris muscle flap with subsequent creation of a critical-size defect in the left femur in Sprague-Dawley rats. Next, the pedicled muscle flap was perfused with high titers of Ad.BMP-2 and Ad.GFP virus, respectively. Twelve animals were divided into three groups comparing the effects of Ad.BMP-2 transduction to Ad.GFP and placebo. Bone healing was monitored radiologically with subsequent histological analysis post-mortem. Results The feasibility of this concept was demonstrated by successful transduction in vitro and in vivo as evidenced by a marked increase of BMP-2 expression. The three examined groups only showed minor difference regarding bone regeneration; however, one complete bridging of the defect was observed in the Ad.BMP-2 group. No evidence of systemic viral contamination was noted. Conclusions A marked increase of local BMP-2 expression (without untoward systemic sequelae) was detected. However, bone healing was not found to be significantly enhanced, possibly due to the small sample size of the study
    corecore