407 research outputs found
Coherent electronic transport through a superconducting film
We study coherent quantum transport through a superconducting film connected
to normal-metal electrodes. Simple expressions for the differential conductance
and the local density of states are obtained in the clean limit and for
transparent interfaces. Quasiparticle interference causes periodic vanishing of
the Andreev reflection at the energies of geometrical resonances, subgap
transport, and gapless superconductivity near the interfaces. Application of
the results to spectroscopic measurements of the superconducting gap and the
Fermi velocity is analyzed.Comment: 5 pages, 4 figure
Role of Interfaces in the Proximity Effect in Anisotropic Superconductors
We report measurements of the critical temperature of YBCO-Co doped YBCO
Superconductor-Normal bilayer films. Depending on the morphology of the S-N
interface, the coupling between S and N layers can be turned on to depress the
critical temperature of S by tens of degrees, or turned down so the layers
appear almost totally decoupled. This novel effect can be explained by the
mechanism of quasiparticle transmission into an anisotropic superconductor.Comment: 13 pages, 3 figure
Subharmonic gap structure in d-wave superconductors
We present a self-consistent theory of current-voltage characteristics of
d-wave/d-wave contacts at arbitrary transparency. In particular, we address the
open problem of the observation of subharmonic gap structure (SGS) in cuprate
junctions. Our analysis shows that: (i) the SGS is possible in d-wave
superconductors, (ii) the existence of bound states within the gap results in
an even-odd effect in the SGS, (iii) elastic scattering mechanisms, like
impurities or surface roughness, may suppress the SGS, and (iv) in the presence
of a magnetic field the Doppler shift of the Andreev bound states leads to a
very peculiar splitting of the SGS, which is an unambiguous fingerprint of
d-wave superconductivity.Comment: Revtex4, 4 pages, 5 figure
Observation of Andreev reflection in the c-axis transport of Bi_2Sr_2CaCu_2O_{8+x} single crystals near T_c and search for the preformed-pair state
We observed an enhancement of the -axis differential conductance around
the zero-bias in AuBiSrCaCuO (Bi2212) junctions near the
superconducting transition temperature . We attribute the conductance
enhancement to the Andreev reflection between the surface Cu-O bilayer with
suppressed superconductivity and the neighboring superconducting inner bilayer.
The continuous evolution from depression to an enhancement of the zero-bias
differential conductance, as the temperature approaches from below,
points to weakening of the barrier strength of the non-superconducting layer
between adjacent Cu-O bilayers. We observed that the conductance enhancement
persisted up to a few degrees above in junctions prepared on slightly
overdoped Bi2212 crystals. However, no conductance enhancement was observed
above in underdoped crystals, although recently proposed theoretical
consideration suggests an even wider temperature range of enhanced zero-bias
conductance. This seems to provide negative perspective to the existence of the
phase-incoherent preformed pairs in the pseudogap state.Comment: 17 pages including 4 figure
Quasiclassical description of transport through superconducting contacts
We present a theoretical study of transport properties through
superconducting contacts based on a new formulation of boundary conditions that
mimics interfaces for the quasiclassical theory of superconductivity. These
boundary conditions are based on a description of an interface in terms of a
simple Hamiltonian. We show how this Hamiltonian description is incorporated
into quasiclassical theory via a T-matrix equation by integrating out
irrelevant energy scales right at the onset. The resulting boundary conditions
reproduce results obtained by conventional quasiclassical boundary conditions,
or by boundary conditions based on the scattering approach. This formalism is
well suited for the analysis of magnetically active interfaces as well as for
calculating time-dependent properties such as the current-voltage
characteristics or as current fluctuations in junctions with arbitrary
transmission and bias voltage. This approach is illustrated with the
calculation of Josephson currents through a variety of superconducting
junctions ranging from conventional to d-wave superconductors, and to the
analysis of supercurrent through a ferromagnetic nanoparticle. The calculation
of the current-voltage characteristics and of noise is applied to the case of a
contact between two d-wave superconductors. In particular, we discuss the use
of shot noise for the measurement of charge transferred in a multiple Andreev
reflection in d-wave superconductors
A Characterization of Scale Invariant Responses in Enzymatic Networks
An ubiquitous property of biological sensory systems is adaptation: a step
increase in stimulus triggers an initial change in a biochemical or
physiological response, followed by a more gradual relaxation toward a basal,
pre-stimulus level. Adaptation helps maintain essential variables within
acceptable bounds and allows organisms to readjust themselves to an optimum and
non-saturating sensitivity range when faced with a prolonged change in their
environment. Recently, it was shown theoretically and experimentally that many
adapting systems, both at the organism and single-cell level, enjoy a
remarkable additional feature: scale invariance, meaning that the initial,
transient behavior remains (approximately) the same even when the background
signal level is scaled. In this work, we set out to investigate under what
conditions a broadly used model of biochemical enzymatic networks will exhibit
scale-invariant behavior. An exhaustive computational study led us to discover
a new property of surprising simplicity and generality, uniform linearizations
with fast output (ULFO), whose validity we show is both necessary and
sufficient for scale invariance of enzymatic networks. Based on this study, we
go on to develop a mathematical explanation of how ULFO results in scale
invariance. Our work provides a surprisingly consistent, simple, and general
framework for understanding this phenomenon, and results in concrete
experimental predictions
Connie Myers v. Albertsons, Inc. : Brief of Appellee
Appeal of the Judgment of Michael Glasmann Based upon a Jury Verdict Second Judicial District Court Weber County, State of Uta
Definition of remission and relapse in polymyalgia rheumatica: data from a literature search compared with a Delphi-based expert consensus
OBJECTIVE: To compare current definitions of remission and relapse in polymyalgia rheumatica (PMR) with items resulting from a Delphi-based expert consensus. METHODS: Relevant studies including definitions of PMR remission and relapse were identified by literature search in PubMed. The questionnaire used for the Delphi survey included clinical (n=33), laboratory (n=54) and imaging (n=7) parameters retrieved from a literature search. Each item was assessed for importance and availability/practicability, and limits were considered for metric parameters. Consensus was defined by an agreement rate of ≥80%. RESULTS: Out of 6031 articles screened, definitions of PMR remission and relapse were available in 18 and 34 studies, respectively. Parameters used to define remission and/or relapse included history and clinical assessment of pain and synovitis, constitutional symptoms, morning stiffness (MS), physician's global assessment, headache, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), blood count, fibrinogen and/or corticosteroid therapy. In the Delphi exercise a consensus was obtained on the following parameters deemed essential for definitions of remission and relapse: patient's pain assessment, MS, ESR, CRP, shoulder and hip pain on clinical examination, limitation of upper limb elevation, and assessment of corticosteroid dose required to control symptoms. CONCLUSIONS: Assessment of patient's pain, MS, ESR, CRP, shoulder pain/limitation on clinical examination and corticosteroid dose are considered to be important in current available definitions of PMR remission and relapse and the present expert consensus. The high relevance of clinical assessment of hips was unique to this study and may improve specificity and sensitivity of definitions for remission and relapse in PMR
Duration of Treatment for Pseudomonas aeruginosa Bacteremia : a Retrospective Study
Introduction: There is no consensus regarding optimal duration of antibiotic therapy for Pseudomonas aeruginosa bacteremia. We aimed to evaluate the impact of short antibiotic course. Methods: We present a retrospective multicenter study including patients with P. aeruginosa bacteremia during 2009-2015. We evaluated outcomes of patients treated with short (6-10 days) versus long (11-15 days) antibiotic courses. The primary outcome was a composite of 30-day mortality or bacteremia recurrence and/or persistence. Univariate and inverse probability treatment-weighted (IPTW) adjusted multivariate analysis for the primary outcome was performed. To avoid immortal time bias, the landmark method was used. Results: We included 657 patients; 273 received a short antibiotic course and 384 a long course. There was no significant difference in baseline characteristics of patients. The composite primary outcome occurred in 61/384 patients in the long-treatment group (16%) versus 32/273 in the short-treatment group (12%) (p = 0.131). Mortality accounted for 41/384 (11%) versus 25/273 (9%) of cases, respectively. Length of hospital stay was significantly shorter in the short group [median 13 days, interquartile range (IQR) 9-21 days, versus median 15 days, IQR 11-26 days, p = 0.002]. Ten patients in the long group discontinued antibiotic therapy owing to adverse events, compared with none in the short group. On univariate and multivariate analyses, duration of therapy was not associated with the primary outcome. Conclusions: In this retrospective study, 6-10 days of antibiotic course for P. aeruginosa bacteremia were as effective as longer courses in terms of survival and recurrence. Shorter therapy was associated with reduced length of stay and less drug discontinuation
- …