230 research outputs found

    An experiment for the measurement of the bound-beta decay of the free neutron

    Full text link
    The hyperfine-state population of hydrogen after the bound-beta decay of the neutron directly yields the neutrino left-handedness or a possible right-handed admixture and possible small scalar and tensor contributions to the weak force. Using the through-going beam tube of a high-flux reactor, a background free hydrogen rate of ca. 3 s1^{-1} can be obtained. The detection of the neutral hydrogen atoms and the analysis of the hyperfine states is accomplished by Lamb shift source type quenching and subsequent ionization. The constraints on the neutrino helicity and the scalar and tensor coupling constants of weak interaction can be improved by a factor of ten.Comment: 9 pages, 5 figures. Submitted to EPJ

    A possible experimental determination of ms/m^m_s/{\hat m} from Kμ4K_{\mu 4} decays

    Full text link
    KπK\pi scattering and Kμ4K_{\mu 4} decays are studied at leading order of improved chiral perturbation theory. It is shown that high precision Kμ4K_{\mu 4} experiments at, e.g., DAΦ\PhiNE should allow for a direct measurement of the quark mass ratio msm_s/m^{\hat m}.Comment: 9 pages, preprint IPNO-TH 93-17, 2 figures not included, available upon request, plain Latex, April 199

    Production of para-- and orthopositronium at relativistic heavy ion colliders

    Full text link
    We consider the ortho-- and parapositronium production in the process AAAA+AA \to AA+ Ps where A is a nucleus with the charge number Z. The inclusive cross section and the energy distribution of the relativistic Ps are calculated which are of primary interest from the experimental point of view. The accuracy of the corresponding cross sections is given by omitting terms (Zα)2/L2\sim (Z\alpha )^2/L^2 for the para--Ps and (Zα)2/L\sim (Z\alpha)^2/L for the ortho--Ps production where L=lnγ29L=\ln{\gamma^2} \approx 9 and 16 for the RHIC and the LHC. Within this accuracy the multiphoton (Coulomb) corrections are taken into account. We show that the RHIC and the LHC will be Ps factories with a productions rate of about 105÷10810^5 \div 10^8 relativistic Ps per day. The fraction of the ortho--Ps is expected to be of the same order as that of the para--Ps for Au--Au and Pb--Pb collisions.Comment: 22 pages, 5 figures, RevTeX, misprint correcte

    The Influence of Strong Interaction on the Pionium Wave Functions at Small Distances

    Get PDF
    The influence of strong π+π\pi^+\pi^- interaction of the behaviour of pionium nS-state wave functions at small distance are investigated both analytically (perturbatively) and so numerically. It is shown that in the whole the accounting of strong interaction results in multiplying of pure Coulomb pionium wave functions by some function practically independent on value of principal quantum number n. Due to this reason the n-independence of probability of π+π\pi^+\pi^- atom production in nS-state remains the same as in case of pure Coulomb π+π\pi^+\pi^- interactionComment: 4 pages, 2 figure

    Perturbative fragmentation

    Full text link
    The Berger model of perturbative fragmentation of quarks to pions is improved by providing an absolute normalization and keeping all terms in a (1-z) expansion, which makes the calculation valid at all values of fractional pion momentum z. We also replace the nonrelativistic wave function of a loosely bound pion by the more realistic procedure of projecting to the light-cone pion wave function, which in turn is taken from well known models. The full calculation does not confirm the (1-z)^2 behavior of the fragmentation function (FF) predicted in for z>0.5z>0.5, and only works at very large z>0.95, where it is in reasonable agreement with phenomenological FFs. Otherwise, we observe quite a different z-dependence which grossly underestimates data at smaller z. The disagreement is reduced after the addition of pions from decays of light vector mesons, but still remains considerable. The process dependent higher twist terms are also calculated exactly and found to be important at large z and/or pT.Comment: 10 pages, 8 figure

    Thermal nociceptive properties of trigeminal afferent neurons in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although nociceptive afferents innervating the body have been heavily studied form many years, much less attention has been paid to trigeminal afferent biology. In particular, very little is known concerning trigeminal nociceptor responses to heat, and almost nothing in the rat. This study uses a highly controlled and reproducible diode laser stimulator to investigate the activation of trigeminal afferents to noxious skin heating.</p> <p>Results</p> <p>The results of this experiment demonstrate that trigeminal thermonociceptors are distinct from themonociceptors innervating the limbs. Trigeminal nociceptors have considerably slower action potential conduction velocities and lower temperature thresholds than somatic afferent neurons. On the other hand, nociceptors innervating both tissue areas separate into those that respond to short pulse, high rate skin heating and those that respond to long pulse, low rate skin heating.</p> <p>Conclusions</p> <p>This paper provides the first description in the literature of the in vivo properties of thermonociceptors in rats. These finding of two separate populations aligns with the separation between C and A-delta thermonociceptors innervating the paw, but have significant differences in terms of temperature threshold and average conduction velocities. An understanding of the temperature response properties of afferent neurons innervating the paw skin have been critical in many mechanistic discoveries, some leading to new pain therapies. A clear understanding of trigeminal nociceptors may be similarly useful in the investigation of trigeminal pain mechanisms and potential therapies.</p

    Superpenetration of a high energy Q barQ bound state through random color fields

    Full text link
    The transmission amplitude of a color dipole through a random external color field is computed in the eikonal approximation in order to study the absorption of high energy quarkonium by nuclear target. It is shown that the internal color state of the dipole becomes randomized and all possible color states are eventually equi-partitioned, while the probability of finding a color singlet bound state attenuates not exponentially, but inversely proportional to the distance L of the random field zone which the dipole has traveled.Comment: 7 pages (3 figures

    The extraction of hadronic parameters from experiments on pionium

    Full text link
    Experimental values of the lifetime of the 1s level of pionium and of the difference between the energies of the 2s and 2p levels yield values of the a(0c) and a(cc) elements of the s-wave scattering matrix for the 2-channel (pi+ pi-, pi0 pi0) system at the pi+ pi- threshold. We develop a method for obtaining the isospin invariant quanties a20 - a00 and 2a00 + a20 from a(0c) and a(cc). We emphasize that the isospin invariant scattering lengths a00 and a20 universally used in the literature cannot be considered to be purely hadronic quantities.Comment: 17 pages, Revtex, 1 postscript figure, new version of figure which removes ghostscript problem

    Production of the Smallest QED Atom: True Muonium (mu^+ mu^-)

    Full text link
    The "true muonium" (mu^+ mu-) and "true tauonium" (tau^+ tau^-) bound states are not only the heaviest, but also the most compact pure QED systems. The rapid weak decay of the tau makes the observation of true tauonium difficult. However, as we show, the production and study of true muonium is possible at modern electron-positron colliders.Comment: 4 pages, ReVTeX, 4 eps figures; minor wording changes and reordering of a reference. Version accepted by Phys. Rev. Let
    corecore