95 research outputs found

    Coordination [CoII2] and [CoIIZnII] helicates showing slow magnetic relaxation

    Get PDF
    The slow magnetic relaxation of CoII ions in the elusive intermediate geometry between the trigonal prism and antiprism has been studied on the new [Co2L3]4+ and [CoZnL3]4+ coordination helicates [L is a bis(pyrazolylpyridine) ligand]. Solution paramagnetic 1H NMR and solid-state magnetization measurements unveil single-molecule-magnet behavior with small axial anisotropy, as predicted previously

    The charge-assisted hydrogen-bonded organic framework (CAHOF) self-assembled from the conjugated acid of tetrakis(4-aminophenyl)methane and 2,6-naphthalenedisulfonate as a new class of recyclable Brønsted acid catalysts

    Get PDF
    The acid–base neutralization reaction of commercially available disodium 2,6-naphthalenedisulfonate (NDS, 2 equivalents) and the tetrahydrochloride salt of tetrakis(4-aminophenyl)methane (TAPM, 1 equivalent) in water gave a novel three-dimensional charge-assisted hydrogen-bonded framework (CAHOF, F-1). The framework F-1 was characterized by X-ray diffraction, TGA, elemental analysis, and 1H NMR spectroscopy. The framework was supported by hydrogen bonds between the sulfonate anions and the ammonium cations of NDS and protonated TAPM moieties, respectively. The CAHOF material functioned as a new type of catalytically active Brønsted acid in a series of reactions, including the ring opening of epoxides by water and alcohols. A Diels–Alder reaction between cyclopentadiene and methyl vinyl ketone was also catalyzed by F-1 in heptane. Depending on the polarity of the solvent mixture, the CAHOF F-1 could function as a purely heterogeneous catalyst or partly dissociate, providing some dissolved F-1 as the real catalyst. In all cases, the catalyst could easily be recovered and recycled

    Crystallization of Nano-Sized Macromolecules by the Example of Hexakis-[4-{(N-Allylimino)methyl}phenoxy]cyclotriphosphazene

    No full text
    The synthesized compound was characterized by 31P, 13C, and 1H NMR spectroscopy and MALDI-TOF mass spectroscopy. According to DSC data, the compound was initially crystalline, but the crystal structure was defective. The crystals suitable for X-ray diffraction study were prepared by slow precipitation of the compound from a solution by a vapor of another solvent. A study of the single crystal obtained in this way demonstrated that the phosphazene ring has a flattened chair conformation. It was found that the sphere circumscribed around the compound molecule has a diameter of 2.382 nm

    New Co-Crystals/Salts of Gallic Acid and Substituted Pyridines: An Effect of Ortho-Substituents on the Formation of an Acid–Pyridine Heterosynthon

    No full text
    Co-crystallization of gallic acid with pyridines and their polyaromatic analogue, quinoline, ortho-substituted by various proton-donating groups able to form hydrogen bonds, produced the only reported co-crystal of gallic acid with an ortho-substituted pyridine, 2-hydroxypyridine, as its preferred pyridone-2 tautomer, and four new crystalline products of gallic acid. These co-crystals, or gallate salts depending on the choice of the pyridine-containing compound, as predicted by the pKa rule, were identified by X-ray diffraction to feature the popular acid–pyridine heterosynthon found in most of the two-component systems of gallic acid that lack ortho-substituents in the pyridine-containing compound. This single-point heterosynthon is, however, modified by one or two proton-donating ortho-substituents, which sometimes may transform into the proton acceptors in an adopted tautomer or zwitterion, to produce its two- or other multi-point variants, including a very rare four-point heterosynthon. The hydrogen bonds they form with the gallic acid species in the appropriate co-crystals/salts strongly favors the formation of the acid–pyridine heterosynthon over the acid–acid homosynthon. In the competitive conditions of multi-component systems, such a modification might be used to reduce supramolecular-synthon-based polymorphism to produce new pharmaceuticals and other crystalline materials with designed properties

    [3+3]-Annulation of Cyclic Nitronates with Vinyl Diazoacetates: Diastereoselective Synthesis of Partially Saturated [1,2]Oxazino[2,3-<i>b</i>][1,2]oxazines and Their Base-Promoted Ring Contraction to Pyrrolo[1,2-<i>b</i>][1,2]oxazine Derivatives

    No full text
    A rhodium(II)-catalyzed reaction of cyclic nitronates (5,6-dihydro-4H-1,2-oxazine N-oxides) with vinyl diazoacetates proceeds as a [3+3]-annulation producing bicyclic unsaturated nitroso acetals (4a,5,6,7-tetrahydro-2H-[1,2]oxazino[2,3-b][1,2]oxazines). Optimization of reaction conditions revealed the use of Rh(II) octanoate as the preferred catalyst in THF at room temperature, which allows the preparation of target products in good yields and excellent diastereoselectivity. Under basic conditions, namely, the combined action of DBU and alcohol, these nitroso acetals undergo ring contraction of an unsaturated oxazine ring into the corresponding pyrrole. Both transformations can be performed in a one-pot fashion, thus constituting a quick approach to oxazine-annulated pyrroles from available starting materials, such as nitroalkenes, olefins, and diazo compounds

    Probing Stereoelectronic Interactions in an O–N–O Unit by the Atomic Energies: Experimental and Theoretical Electron Density Study

    No full text
    Stereoelectronic interaction lp­(O1) → σ*­(N1–O2) in a O–N–O unit was analyzed by means of R. Bader’s Atoms in Molecule theory on the basis of X-ray diffraction data for dimethyl-(2<i>R</i>,4a<i>R</i>,5<i>S</i>,7<i>R</i>)-2,5,7-triphenylhexahydro-4<i>H</i>-[1,2]­oxazino­[2,3-b]­[1,2]­oxazine-4,4-dicarboxylate. Atomic energies obtained by applying this approach to both the experimental and theoretical electron densities were used to probe the energy of this strong stereoelectronic interaction, giving consistent results with the NBO analysis, although showing its destabilizing character

    Synthesis of 2 H

    No full text

    Spin State Behavior of A Spin-Crossover Iron(II) Complex with N,N′-Disubstituted 2,6-bis(pyrazol-3-yl)pyridine: A Combined Study by X-ray Diffraction and NMR Spectroscopy

    No full text
    A series of three different solvatomorphs of a new iron(II) complex with N,N′-disubstituted 2,6-bis(pyrazol-3-yl)pyridine, including those with the same lattice solvent, has been identified by X-ray diffraction under the same crystallization conditions with the metal ion trapped in the different spin states. A thermally induced switching between them, however, occurs in a solution, as unambiguously confirmed by the Evans technique and an analysis of paramagnetic chemical shifts, both based on variable-temperature NMR spectroscopy. The observed stabilization of the high-spin state by an electron-donating substituent contributes to the controversial results for the iron(II) complexes of 2,6-bis(pyrazol-3-yl)pyridines, preventing ‘molecular’ design of their spin-crossover activity; the synthesized complex being only the fourth of the spin-crossover (SCO)-active kind with an N,N′-disubstituted ligand
    corecore