1,595 research outputs found
Metabolic niches and biodiversity : a test case in the deep sea benthos
The great anthropogenic alterations occurring to carbon availability in the oceans necessitate an understanding of the energy requirements of species and how changes in energy availability may impact biodiversity. The deep-sea floor is characterized naturally by extremely low availability of chemical energy and is particularly vulnerable to changes in carbon flux from surface waters. Because the energetic requirements of organisms impact nearly every aspect of their ecology and evolution, we hypothesize that species are adapted to specific levels of carbon availability and occupy a particular metabolic niche. We test this hypothesis in deep-sea, benthic invertebrates specifically examining how energetic demand, axes of the metabolic niche, and geographic range size vary over gradients of chemical energy availability. We find that benthic invertebrates with higher energetic expenditures, and ecologies associated with high energy demand, are located in areas with higher chemical energy availability. In addition, we find that range size and location of deep-sea, benthic species is determined by geographic patterns in chemical energy availability. Our findings indicate that species may be adapted to specific energy regimes, and the metabolic niche can potentially link scales from individuals to ecosystems as well as adaptation to patterns in biogeography and biodiversity
Regional femoral bone blood flow rates in laying and non-laying chickens estimated with fluorescent microspheres
The metabolic rate of vertebrate bone tissue is related to bone growth, repair and homeostasis, which are all dependent on life stage. Bone metabolic rate is difficult to measure directly, but absolute blood flow rate (Q̇) should reflect local tissue oxygen requirements. A recent 'foramen technique' has derived an index of blood flow rate (Qi) by measuring nutrient foramen sizes of long bones. Qi is assumed to be proportional to Q̇, however, the assumption has never been tested. This study used fluorescent microsphere infusion to measure femoral bone Q̇ in anaesthetised non-laying hens, laying hens and roosters. Mean cardiac output was 338±38 ml min-1 kg-1, and the two femora received 0.63±0.10 % of this. Laying hens had higher wet bone mass-specific Q̇ to femora (0.23±0.09 ml min-1 g-1) than the non-laying hens (0.12±0.06 ml min-1 g-1) and roosters (0.14±0.04 ml min-1 g-1), presumably associated with higher bone calcium mobilization during eggshell production. Estimated metabolic rate of femoral bone was 0.019 ml O2 min-1 g-1. Femoral Q̇ increased significantly with body mass, but was not correlated with nutrient foramen radius (r), probably due to a narrow range in foramen radius. Over all 18 chickens, femoral shaft Q̇/r was 1.07±0.30 ml min-1 mm-1. Mean Qi in chickens was significantly higher than predicted by an allometric relationship for adult cursorial bird species, possibly because the birds were still growing.Qiaohui Hu, Thomas J. Nelson and Roger S. Seymou
CX3CR1+ interstitial dendritic cells form a contiguous network throughout the entire kidney
Dendritic cells (DCs) interface innate and adaptive immunity in nonlymphoid organs; however, the exact distribution and types of DC within the kidney are not known. We utilized CX3CR1GFP/+ mice to characterize the anatomy and phenotype of tissue-resident CX3CR1+ DCs within normal kidney. Laser-scanning confocal microscopy revealed an extensive, contiguous network of stellate-shaped CX3CR1+ DCs throughout the interstitial and mesangial spaces of the entire kidney. Intravital microscopy of the superficial cortex showed stationary interstitial CX3CR1+ DCs that continually probe the surrounding tissue environment through dendrite extensions. Flow cytometry of renal CX3CR1+ DCs showed significant coexpression of CD11c and F4/80, high major histocompatibility complex class II and FcR expression, and immature costimulatory but competent phagocytic ability indicative of tissue-resident, immature DCs ready to respond to environment cues. Thus, within the renal parenchyma, there exists little immunological privilege from the surveillance provided by renal CX3CR1+ DCs, a major constituent of the heterogeneous mononuclear phagocyte system populating normal kidney
ADAMTS9-regulated pericellular matrix dynamics governs focal adhesion-dependent smooth muscle differentiation
Focal adhesions anchor cells to extracellular matrix (ECM) and direct assembly of a pre-stressed actin cytoskeleton. They act as a cellular sensor and regulator, linking ECM to the nucleus. Here, we identify proteolytic turnover of the anti-adhesive proteoglycan versican as a requirement for maintenance of smooth muscle cell (SMC) focal adhesions. Using conditional deletion in mice, we show that ADAMTS9, a secreted metalloprotease, is required for myometrial activation during late gestation and for parturition. Through knockdown of ADAMTS9 in uterine SMC, and manipulation of pericellular versican via knockdown or proteolysis, we demonstrate that regulated pericellular matrix dynamics is essential for focal adhesion maintenance. By influencing focal adhesion formation, pericellular versican acts upstream of cytoskeletal assembly and SMC differentiation. Thus, pericellular versican proteolysis by ADAMTS9 balances pro- and anti-adhesive forces to maintain an SMC phenotype, providing a concrete example of the dynamic reciprocity of cells and their ECM
Superconducting Coherence and the Helicity Modulus in Vortex Line Models
We show how commonly used models for vortex lines in three dimensional
superconductors can be modified to include k=0 excitations. We construct a
formula for the k=0 helicity modulus in terms of fluctuations in the projected
area of vortex loops. This gives a convenient criterion for the presence of
superconducting coherence. We also present Monte Carlo simulations of a
continuum vortex line model for the melting of the Abrikosov vortex lattice in
pure YBCO.Comment: 4 pages RevTeX, 2 eps figures included using eps
Improved perturbation theory in the vortex liquids state of type II superconductors
We develop an optimized perturbation theory for the Ginzburg - Landau
description of thermal fluctuations effects in the vortex liquids. Unlike the
high temperature expansion which is asymptotic, the optimized expansion is
convergent. Radius of convergence on the lowest Landau level is in
2D and in 3D. It allows a systematic calculation of magnetization
and specific heat contributions due to thermal fluctuations of vortices in
strongly type II superconductors to a very high precision. The results are in
good agreement with existing Monte Carlo simulations and experiments.
Limitations of various nonperturbative and phenomenological approaches are
noted. In particular we show that there is no exact intersection point of the
magnetization curves both in 2D and 3D.Comment: 24 pages, 9 figure
Vortex dynamics for two-dimensional XY models
Two-dimensional XY models with resistively shunted junction (RSJ) dynamics
and time dependent Ginzburg-Landau (TDGL) dynamics are simulated and it is
verified that the vortex response is well described by the Minnhagen
phenomenology for both types of dynamics. Evidence is presented supporting that
the dynamical critical exponent in the low-temperature phase is given by
the scaling prediction (expressed in terms of the Coulomb gas temperature
and the vortex renormalization given by the dielectric constant
) both for RSJ and TDGL
and that the nonlinear IV exponent a is given by a=z+1 in the low-temperature
phase. The results are discussed and compared with the results of other recent
papers and the importance of the boundary conditions is emphasized.Comment: 21 pages including 15 figures, final versio
Recommended from our members
Effect of wind speed on aerosol optical depth over remote oceans, based on data from the Maritime Aerosol Network
The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (~0.004–0.005), even for strong winds over 10 m s−1. The relationships show significant scatter (correlation coefficients typically in the range 0.3–0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used
- …