2,794 research outputs found
Simulated Quantum Computation of Global Minima
Finding the optimal solution to a complex optimization problem is of great
importance in practically all fields of science, technology, technical design
and econometrics. We demonstrate that a modified Grover's quantum algorithm can
be applied to real problems of finding a global minimum using modest numbers of
quantum bits. Calculations of the global minimum of simple test functions and
Lennard-Jones clusters have been carried out on a quantum computer simulator
using a modified Grover's algorithm. The number of function evaluations
reduced from O(N) in classical simulation to in quantum
simulation. We also show how the Grover's quantum algorithm can be combined
with the classical Pivot method for global optimization to treat larger
systems.Comment: 6 figures. Molecular Physics, in pres
Rectified voltage induced by a microwave field in a confined two-dimensional electron gas with a mesoscopic static vortex
We investigate the effect of a microwave field on a confined two dimensional
electron gas which contains an insulating region comparable to the Fermi
wavelength. The insulating region causes the electron wave function to vanish
in that region. We describe the insulating region as a static vortex. The
vortex carries a flux which is determined by vanishing of the charge density of
the electronic fluid due to the insulating region. The sign of the vorticity
for a hole is opposite to the vorticity for adding additional electrons. The
vorticity gives rise to non-commuting kinetic momenta. The two dimensional
electron gas is described as fluid with a density which obeys the Fermi-Dirac
statistics. The presence of the confinement potential gives rise to vanishing
kinetic momenta in the vicinity of the classical turning points. As a result,
the Cartesian coordinate do not commute and gives rise to a Hall current which
in the presence of a modified Fermi-Surface caused by the microwave field
results in a rectified voltage. Using a Bosonized formulation of the two
dimensional gas in the presence of insulating regions allows us to compute the
rectified current. The proposed theory may explain the experimental results
recently reported by J. Zhang et al.Comment: 14 pages, 2 figure
A reference relative time-scale as an alternative to chronological age for cohorts with long follow-up
Background: Epidemiologists have debated the appropriate time-scale for cohort survival studies; chronological age or time-on-study being two such time-scales. Importantly, assessment of risk factors may depend on the choice of time-scale. Recently, chronological or attained age has gained support but a case can be made for a ‘reference relative time-scale’ as an alternative which circumvents difficulties that arise with this and other scales. The reference relative time of an individual participant is the integral of a reference population hazard function between time of entry and time of exit of the individual. The objective here is to describe the reference relative time-scale, illustrate its use, make comparison with attained age by simulation and explain its relationship to modern and traditional epidemiologic methods.
Results: A comparison was made between two models; a stratified Cox model with age as the time-scale versus an un-stratified Cox model using the reference relative time-scale. The illustrative comparison used a UK cohort of cotton workers, with differing ages at entry to the study, with accrual over a time period and with long follow-up. Additionally, exponential and Weibull models were fitted since the reference relative time-scale analysis need not be restricted to the Cox model. A simulation study showed that analysis using the reference relative time-scale and analysis using chronological age had very similar power to detect a significant risk factor and both were equally unbiased. Further, the analysis using the reference relative time-scale supported fully-parametric survival modelling and allowed percentile predictions and mortality curves to be constructed.
Conclusions: The reference relative time-scale was a viable alternative to chronological age, led to simplification of the modelling process and possessed the defined features of a good time-scale as defined in reliability theory. The reference relative time-scale has several interpretations and provides a unifying concept that links contemporary approaches in survival and reliability analysis to the traditional epidemiologic methods of Poisson regression and standardised mortality ratios. The community of practitioners has not previously made this connection
Alteration of Hypothalamic–Pituitary–Thyroid Axis Function in Non-Small-Cell Lung Cancer Patients
The aim of this study was to evaluate the hypothalamic–pituitary–thyroid (HPT) axis function in patients suffering from lung cancer. Thyrotropin-releasing hormone (TRH), thyroid-stimulating hormone (TSH), free thyroxine (FT4), interleukin (IL)-2, and melatonin serum levels were measured in blood samples collected every 4 hours for 24 hours from 11 healthy participants (H; ages 35-53 years) and 9 patients suffering from non-small-cell lung cancer (C; ages 43-63 years). Relationships between hormone levels overall and over time of day were evaluated within and among groups. A prominent circadian rhythm with peaks near midnight was present for TSH and melatonin serum levels in both H and C, indicating similar synchronization of the main body clock to the 24-hour environmental light–dark cycle. As regards 24-hour means in H and C, TSH was lower in C, whereas TRH, FT4, and IL-2 were higher in C, with no difference in melatonin levels. Simple linear regression, FT4 versus TRH, showed a positive correlation in H..
Two-dimensional Vortices in Superconductors
Superconductors have two key characteristics. They expel magnetic field and
they conduct electrical current with zero resistance. However, both properties
are compromised in high magnetic fields which can penetrate the material and
create a mixed state of quantized vortices. The vortices move in response to an
electrical current dissipating energy which destroys the zero resistance
state\cite{And64}. One of the central problems for applications of high
temperature superconductivity is the stabilization of vortices to ensure zero
electrical resistance. We find that vortices in the anisotropic superconductor
BiSrCaCuO (Bi-2212) have a phase transition from
a liquid state, which is inherently unstable, to a two-dimensional vortex
solid. We show that at high field the transition temperature is independent of
magnetic field, as was predicted theoretically for the melting of an ideal
two-dimensional vortex lattice\cite{Fis80,Gla91}. Our results indicate that the
stable solid phase can be reached at any field as may be necessary for
applications involving superconducting magnets\cite{Has04,Sca04,COHMAG}. The
vortex solid is disordered, as suggested by previous studies at lower
fields\cite{Lee93,Cub93}. But its evolution with increasing magnetic field
displays unexpected threshold behavior that needs further investigation.Comment: 5 pages and 4 figures. submitted to Nature Physic
Cross-cultural adaptation and validation of the “spinal cord injury-falls concern scale” in the Italian population
Study design: Psychometrics study. Objective: The objective of this study was to develop an Italian version of the Spinal Cord Injury-Falls Concern Scale (SCI-FCS) and examine its reliability and validity. Setting: Multicenter study in spinal units in Northern and Southern Italy. The scale also was administered to non-hospitalized outpatient clinic patients. Methods: The original scale was translated from English to Italian using the “Translation and Cultural Adaptation of Patient-Reported Outcomes Measures” guidelines. The reliability and validity of the culturally adapted scale were assessed following the “Consensus-Based Standards for the Selection of Health Status Measurement Instruments” checklist. The SCI-FCS-I internal consistency, inter-rater, and intra-rater reliability were examined using Cronbach’s alpha coefficient and the intraclass correlation coefficient, respectively. Concurrent validity was evaluated using Pearson’s correlation coefficient with the Italian version of the short form of the Wheelchair Use Confidence Scale for Manual Wheelchair Users (WheelCon-M-I-short form). Results: The Italian version of the SCI-FCS-I was administered to 124 participants from 1 June to 30 September 2017. The mean ± SD of the SCI-FCS-I score was 16.73 ± 5.88. All SCI-FCS items were either identical or similar in meaning to the original version’s items. Cronbach’s α was 0.827 (p < 0.01), the inter-rater reliability was 0.972 (p < 0.01), and the intra-rater reliability was 0.973 (p < 0.01). Pearson’s correlation coefficient of the SCI-FCS-I scores with the WheelCon-M-I-short form was 0.56 (p < 0.01). Conclusions: The SCI-FCS-I was found to be reliable and a valid outcome measure for assessing manual wheelchair concerns about falling in the Italian population
Classical kinetic energy, quantum fluctuation terms and kinetic-energy functionals
We employ a recently formulated dequantization procedure to obtain an exact
expression for the kinetic energy which is applicable to all kinetic-energy
functionals. We express the kinetic energy of an N-electron system as the sum
of an N-electron classical kinetic energy and an N-electron purely quantum
kinetic energy arising from the quantum fluctuations that turn the classical
momentum into the quantum momentum. This leads to an interesting analogy with
Nelson's stochastic approach to quantum mechanics, which we use to conceptually
clarify the physical nature of part of the kinetic-energy functional in terms
of statistical fluctuations and in direct correspondence with Fisher
Information Theory. We show that the N-electron purely quantum kinetic energy
can be written as the sum of the (one-electron) Weizsacker term and an
(N-1)-electron kinetic correlation term. We further show that the Weizsacker
term results from local fluctuations while the kinetic correlation term results
from the nonlocal fluctuations. For one-electron orbitals (where kinetic
correlation is neglected) we obtain an exact (albeit impractical) expression
for the noninteracting kinetic energy as the sum of the classical kinetic
energy and the Weizsacker term. The classical kinetic energy is seen to be
explicitly dependent on the electron phase and this has implications for the
development of accurate orbital-free kinetic-energy functionals. Also, there is
a direct connection between the classical kinetic energy and the angular
momentum and, across a row of the periodic table, the classical kinetic energy
component of the noninteracting kinetic energy generally increases as Z
increases.Comment: 10 pages, 1 figure. To appear in Theor Chem Ac
Human Breast Milk and Antiretrovirals Dramatically Reduce Oral HIV-1 Transmission in BLT Humanized Mice
Currently, over 15% of new HIV infections occur in children. Breastfeeding is a major contributor to HIV infections in infants. This represents a major paradox in the field because in vitro, breast milk has been shown to have a strong inhibitory effect on HIV infectivity. However, this inhibitory effect has never been demonstrated in vivo. Here, we address this important paradox using the first humanized mouse model of oral HIV transmission. We established that reconstitution of the oral cavity and upper gastrointestinal (GI) tract of humanized bone marrow/liver/thymus (BLT) mice with human leukocytes, including the human cell types important for mucosal HIV transmission (i.e. dendritic cells, macrophages and CD4+ T cells), renders them susceptible to oral transmission of cell-free and cell-associated HIV. Oral transmission of HIV resulted in systemic infection of lymphoid and non-lymphoid tissues that is characterized by the presence of HIV RNA in plasma and a gradual decline of CD4+ T cells in peripheral blood. Consistent with infection of the oral cavity, we observed virus shedding into saliva. We then evaluated the role of human breast milk on oral HIV transmission. Our in vivo results demonstrate that breast milk has a strong inhibitory effect on oral transmission of both cell-free and cell-associated HIV. Finally, we evaluated the effect of antiretrovirals on oral transmission of HIV. Our results show that systemic antiretrovirals administered prior to exposure can efficiently prevent oral HIV transmission in BLT mice
Anoxia- and hypoxia-induced expression of LDH-A* in the Amazon Oscar, Astronotus crassipinis
Adaptation or acclimation to hypoxia occurs via the modulation of physiologically relevant genes, such as erythropoietin, transferrin, vascular endothelial growth factor, phosphofructokinase and lactate dehydrogenase A. In the present study, we have cloned, sequenced and examined the modulation of the LDH-A gene after an Amazonian fish species, Astronotus crassipinis (the Oscar), was exposed to hypoxia and anoxia. In earlier studies, we have discovered that adults of this species are extremely tolerant to hypoxia and anoxia, while the juveniles are less tolerant. Exposure of juveniles to acute hypoxia and anoxia resulted in increased LDH-A gene expression in skeletal and cardiac muscles. When exposed to graded hypoxia juveniles show decreased LDH-A expression. In adults, the levels of LDH-A mRNA did not increase in hypoxic or anoxic conditions. Our results demonstrate that, when given time for acclimation, fish at different life-stages are able to respond differently to survive hypoxic episodes
- …