20 research outputs found

    ApoB siRNA-induced Liver Steatosis is Resistant to Clearance by the Loss of Fatty Acid Transport Protein 5 (Fatp5)

    Get PDF
    The association between hypercholesterolemia and elevated serum apolipoprotein B (APOB) has generated interest in APOB as a therapeutic target for patients at risk of developing cardiovascular disease. In the clinic, mipomersen, an antisense oligonucleotide (ASO) APOB inhibitor, was associated with a trend toward increased hepatic triglycerides, and liver steatosis remains a concern. We found that siRNA-mediated knockdown of ApoB led to elevated hepatic triglycerides and liver steatosis in mice engineered to exhibit a human-like lipid profile. Many genes required for fatty acid synthesis were reduced, suggesting that the observed elevation in hepatic triglycerides is maintained by the cell through fatty acid uptake as opposed to fatty acid synthesis. Fatty acid transport protein 5 (Fatp5/Slc27a5) is required for long chain fatty acid (LCFA) uptake and bile acid reconjugation by the liver. Fatp5 knockout mice exhibited lower levels of hepatic triglycerides due to decreased fatty acid uptake, and shRNA-mediated knockdown of Fatp5 protected mice from diet-induced liver steatosis. Here, we evaluated if siRNA-mediated knockdown of Fatp5 was sufficient to alleviate ApoB knockdown-induced steatosis. We determined that, although Fatp5 siRNA treatment was sufficient to increase the proportion of unconjugated bile acids 100-fold, consistent with FATP5's role in bile acid reconjugation, Fatp5 knockdown failed to influence the degree, zonal distribution, or composition of the hepatic triglycerides that accumulated following ApoB siRNA treatment

    Choice of Fixative Is Crucial to Successful Immunohistochemical Detection of Phosphoproteins in Paraffin-embedded Tumor Tissues

    Get PDF
    Protein phosphorylation is frequently used as an indicator of cellular signaling activity. Elevated phosphorylation of tyrosine kinase receptors plays an important role in cancer pathogenesis. However, phosphoproteins are usually poorly preserved in clinical tissue samples that are routinely fixed in 10% formalin. Nonetheless, in oncology clinical trials, use of phosphoproteins as biomarkers has been considered to be of great value in evaluating the effectiveness of a given drug candidate. Therefore, it is worthy of investigating whether alternative fixatives would improve the preservation of phosphoproteins in tissue. We compared the IHC staining of a number of phosphoproteins in xenograft and human surgical tumor tissues fixed in three different fixatives: 10% formalin, 4% paraformaldehyde (PFA), and Streckā€™s tissue fixative (STF). We found that STF significantly enhanced the staining intensity of phosphoproteins compared with 10% formalin or 4% PFA. STF fixative also showed superiority of preservation of phosphoproteins in human surgical samples. Our results indicate that the choice of fixative could significantly affect the usability of clinical tissue samples for evaluating phosphoprotein by IHC. (J Histochem Cytochem 57:257ā€“264, 2009

    Real-Time Monitoring of Bacterial Infection In Vivo: Development of Bioluminescent Staphylococcal Foreign-Body and Deep-Thigh-Wound Mouse Infection Models

    No full text
    Staphylococcal infections associated with catheter and prosthetic implants are difficult to eradicate and often lead to chronic infections. Development of novel antibacterial therapies requires simple, reliable, and relevant models for infection. Using bioluminescent Staphylococcus aureus, we have adapted the existing foreign-body and deep-wound mouse models of staphylococcal infection to allow real-time monitoring of the bacterial colonization of catheters or tissues. This approach also enables kinetic measurements of bacterial growth and clearance in each infected animal. Persistence of infection was observed throughout the course of the study until termination of the experiment at day 16 in a deep-wound model and day 21 in the foreign-body model, providing sufficient time to test the effects of antibacterial compounds. The usefulness of both animal models was assessed by using linezolid as a test compound and comparing bioluminescent measurements to bacterial counts. In the foreign-body model, a three-dose antibiotic regimen (2, 5, and 24 h after infection) resulted in a decrease in both luminescence and bacterial counts recovered from the implant compared to those of the mock-treated infected mice. In addition, linezolid treatment prevented the formation of subcutaneous abscesses, although it did not completely resolve the infection. In the thigh model, the same treatment regimen resulted in complete resolution of the luminescent signal, which correlated with clearance of the bacteria from the thighs
    corecore