640 research outputs found

    Inferring the time-dependent complex Ginzburg-Landau equation from modulus data

    Full text link
    We present a formalism for inferring the equation of evolution of a complex wave field that is known to obey an otherwise unspecified (2+1)-dimensional time-dependent complex Ginzburg-Landau equation, given field moduli over three closely-spaced planes. The phase of the complex wave field is retrieved via a non-interferometric method, and all terms in the equation of evolution are determined using only the magnitude of the complex wave field. The formalism is tested using simulated data for a generalized nonlinear system with a single-component complex wave field. The method can be generalized to multi-component complex fields.Comment: 9 pages, 9 figure

    Schooling for violence and peace : how does peace education differ from ‘normal’ schooling?

    Get PDF
    This article reviews literature on the roles of schooling in both reproducing and actively perpetrating violence, and sets out an historical explanation of why schools are socially constructed in such a way as to make these roles possible. It then discusses notions of peace education in relation to one particular project in England before using empirical data from research on the project to examine contrasts between peace education approaches and ‘normal’ schooling from the viewpoints of project workers, pupils and teachers. It concludes that such contrasts and tensions do indeed exist and that this raises serious questions about the compatibility of peace education and formal schooling

    Performance of the ARIANNA Hexagonal Radio Array

    Get PDF
    Installation of the ARIANNA Hexagonal Radio Array (HRA) on the Ross Ice Shelf of Antarctica has been completed. This detector serves as a pilot program to the ARIANNA neutrino telescope, which aims to measure the diffuse flux of very high energy neutrinos by observing the radio pulse generated by neutrino-induced charged particle showers in the ice. All HRA stations ran reliably and took data during the entire 2014-2015 austral summer season. A new radio signal direction reconstruction procedure is described, and is observed to have a resolution better than a degree. The reconstruction is used in a preliminary search for potential neutrino candidate events in the data from one of the newly installed detector stations. Three cuts are used to separate radio backgrounds from neutrino signals. The cuts are found to filter out all data recorded by the station during the season while preserving 85.4% of simulated neutrino events that trigger the station. This efficiency is similar to that found in analyses of previous HRA data taking seasons.Comment: Proceedings from the 34th ICRC2015, http://icrc2015.nl/ . 8 pages, 6 figure

    Livetime and sensitivity of the ARIANNA Hexagonal Radio Array

    Get PDF
    The ARIANNA collaboration completed the installation of the hexagonal radio array (HRA) in December 2014, serving as a pilot program for a planned high energy neutrino telescope located about 110 km south of McMurdo Station on the Ross Ice Shelf near the coast of Antarctica. The goal of ARIANNA is to measure both diffuse and point fluxes of astrophysical neutrinos at energies in excess of 1016 eV. Upgraded hardware has been installed during the 2014 deployment season and stations show a livetime of better than 90% between commissioning and austral sunset. Though designed to observe radio pulses from neutrino interactions originating within the ice below each detector, one station was modified to study the low-frequency environment and signals from above. We provide evidence that the HRA observed both continuous emission from the Galaxy and a transient solar burst. Preliminary work on modeling the (weak) Galactic signal confirm the absolute sensitivity of the HRA detector system.Comment: Proceedings from the 34th ICRC2015, http://icrc2015.nl/, 8 pages, 6 figure

    Imaging Jupiter's radiation belts down to 127 MHz with LOFAR

    Get PDF
    Context. Observing Jupiter's synchrotron emission from the Earth remains today the sole method to scrutinize the distribution and dynamical behavior of the ultra energetic electrons magnetically trapped around the planet (because in-situ particle data are limited in the inner magnetosphere). Aims. We perform the first resolved and low-frequency imaging of the synchrotron emission with LOFAR at 127 MHz. The radiation comes from low energy electrons (~1-30 MeV) which map a broad region of Jupiter's inner magnetosphere. Methods (see article for complete abstract) Results. The first resolved images of Jupiter's radiation belts at 127-172 MHz are obtained along with total integrated flux densities. They are compared with previous observations at higher frequencies and show a larger extent of the synchrotron emission source (>=4 RJR_J). The asymmetry and the dynamic of east-west emission peaks are measured and the presence of a hot spot at lambda_III=230 {\deg} ±\pm 25 {\deg}. Spectral flux density measurements are on the low side of previous (unresolved) ones, suggesting a low-frequency turnover and/or time variations of the emission spectrum. Conclusions. LOFAR is a powerful and flexible planetary imager. The observations at 127 MHz depict an extended emission up to ~4-5 planetary radii. The similarities with high frequency results reinforce the conclusion that: i) the magnetic field morphology primarily shapes the brightness distribution of the emission and ii) the radiating electrons are likely radially and latitudinally distributed inside about 2 RJR_J. Nonetheless, the larger extent of the brightness combined with the overall lower flux density, yields new information on Jupiter's electron distribution, that may shed light on the origin and mode of transport of these particles.Comment: 10 pages, 12 figures, accepted for publication in A&A (27/11/2015) - abstract edited because of limited character

    Observation of classically `forbidden' electromagnetic wave propagation and implications for neutrino detection

    Full text link
    Ongoing experimental efforts in Antarctica seek to detect ultra-high energy neutrinos by measurement of radio-frequency (RF) Askaryan radiation generated by the collision of a neutrino with an ice molecule. An array of RF antennas, deployed either in-ice or in-air, is used to infer the properties of the neutrino. To evaluate their experimental sensitivity, such experiments require a refractive index model for ray tracing radio-wave trajectories from a putative in-ice neutrino interaction point to the receiving antennas; this gives the degree of signal absorption or ray bending from source to receiver. The gradient in the density profile over the upper 200 meters of Antarctic ice, coupled with Fermat's least-time principle, implies ray "bending" and the existence of "forbidden" zones for predominantly horizontal signal propagation at shallow depths. After re-deriving the formulas describing such shadowing, we report on experimental results that, somewhat unexpectedly, demonstrate the existence of electromagnetic wave transport modes from nominally shadowed regions. The fact that this shadow-signal propagation is observed both at South Pole and the Ross Ice Shelf in Antarctica suggests that the effect may be a generic property of polar ice, with potentially important implications for experiments seeking to detect neutrinos.Comment: 33 pages, 14 figures, accepted for publication in JCA

    Timing Calibration and Windowing Technique Comparison for Lightning Mapping Arrays

    Get PDF
    Since their introduction 22 years ago, lightning mapping arrays (LMA) have played a central role in the investigation of lightning physics. Even in recent years with the proliferation of digital interferometers and the introduction of the LOw Frequency ARray (LOFAR) radio telescope, LMAs still play an important role in lightning science. LMA networks use a simple windowing technique that records the highest pulse in either 80 ÎŒs or 10 ÎŒs fixed windows in order to apply a time-of-arrival location technique. In this work, we develop an LMA-emulator that uses lightning data recorded by LOFAR to simulate an LMA, and we use it to test three new styles of pulse windowing. We show that they produce very similar results as the more traditional LMA windowing, implying that LMA lightning mapping results are relatively independent of windowing technique. In addition, each LMA station has its GPS-conditioned clock. While the timing accuracy of GPS receivers has improved significantly over the years, they still significantly limit the timing measurements of the LMA. Recently, new time-of-arrival techniques have been introduced that can be used to self-calibrate systematic offsets between different receiving stations. Applying this calibration technique to a set of data with 32 ns uncertainty, observed by the Colorado LMA, improves the timing uncertainty to 19 ns. This technique is not limited to LMAs and could be used to help calibrate future multi-station lightning interferometers

    The Effectiveness of Family Constellation Therapy in Improving Mental Health:A Systematic ReviewPalabras clave(sic)(sic)(sic)

    Get PDF
    Family/systemic constellation therapy is a short-term group intervention aiming to help clients better understand and then change their conflictive experiences within a social system (e.g., family). The aim of the present systematic review was to synthetize the empirical evidence on the tolerability and effectiveness of this intervention in improving mental health. The PsycINFO, Embase, MEDLINE, ISI Web of Science, Psyndex, PsycEXTRA, ProQuest Dissertations & Theses, The Cochrane Library, Google Scholar, and an intervention-specific organization's databases were searched for quantitative, prospective studies published in English, German, Spanish, French, Dutch or Hungarian up until April 2020. Out of 4,197 identified records, 67 were assessed for eligibility, with 12 studies fulfilling inclusion criteria (10 independent samples; altogether 568 participants). Outcome variables were diverse ranging from positive self-image through psychopathology to perceived quality of family relationships. Out of the 12 studies, nine showed statistically significant improvement postintervention. The studies showing no significant treatment benefit were of lower methodological quality. The random-effect meta-analysis-conducted on five studies in relation to general psychopathology-indicated a moderate effect (Hedges' g of 0.531, CI: 0.387-0.676). Authors of seven studies also investigated potential iatrogenic effects and four studies reported minor or moderate negative effects in a small proportion (5-8%) of participants that potentially could have been linked to the intervention. The data accumulated to date point into the direction that family constellation therapy is an effective intervention with significant mental health benefits in the general population; however, the quantity and overall quality of the evidence is low
    • 

    corecore