1,370 research outputs found

    Optical spectroscopy of (candidate) ultra-compact X-ray binaries: constraints on the composition of the donor stars

    Get PDF
    We present optical spectroscopy of several (candidate) ultra-compact X-ray binaries (UCXBs) obtained with the ESO VLT and Gemini-North telescopes. In only one of five observed UCXB candidates did we find evidence for H in its spectrum (4U 1556-60). For XB 1905+00 the optical counterpart is not detected. For the known UCXBs 4U 1626-67 and XB 1916-05 we find spectra consistent with a C/O and a He/N accretion disc respectively, the latter is the first optical spectrum of a He-rich donor in an UCXB. Interestingly, the C/O spectrum of 4U 1626-67 shows both similarities as well as marked differences from the optical C/O spectrum of 4U 0614+09. We obtained phase resolved spectroscopy of 4U 0614+09 and the 44 min transient XTE J0929-314. In neither object were we able to detect clear orbital periodicities, highlighting the difficulties of period determinations in UCXBs. We reanalysed the spectra of XTE J0929-314 that were taken close to the peak of its 2003 X-ray outburst and do not confirm the detection of Halpha emission as was claimed in the literature. The peak spectra do show strong C or N emission around 4640A, as has also been detected in other UCXBs. We discuss the implications of our findings for our understanding of the formation of UCXBs and the Galactic population of UCXBs. At the moment all studied systems are consistent with having white dwarf donors, the majority being C/O rich.Comment: Accepted for publication in MNRA

    Detection of the radial velocity curve of the B5-A0 supergiant companion star of Cir X-1?

    Get PDF
    In this Paper we report on phase resolved I-band optical spectroscopic and photometric observations of CirX-1 obtained with the Very Large Telescope. The spectra are dominated by Paschen absorption lines at nearly all orbital phases except near phase zero (coinciding with the X-ray dip) when the absorption lines are filled-in by broad Paschen emission lines. The radial velocity curve of the absorption lines corresponds to an eccentric orbit (e=0.45) whose period and time of periastron passage are consistent with the period and phase predicted by the most recent X-ray dip ephemeris. We found that the I-band magnitude decreases from 17.6 to ~16.8 near phase 0.9-1.0, this brightening coincides in phase with the X-ray dip. Even though it is likely that the absorption line spectrum is associated with the companion star of CirX-1, we cannot exclude the possibility that the spectrum originates in the accretion disc. However, if the spectrum belongs to the companion star, it must be a supergiant of spectral type B5-A0. If we assume that the compact object does not move through the companion star at periastron, the companion star mass is constrained to ~<10 Msun for a 1.4 Msun neutron star, whereas the inclination has to be ~> 13.7 degrees. Alternatively, the measured absorption lines and their radial velocity curve can be associated with the accretion disc surrounding a 1.4 Msun neutron star and its motion around the centre of mass. An absorption line spectrum from an accretion disc is typically found when our line-of-sight passes through the accretion disc rim implying a high inclination. However, from radio observations it was found that the angle between the line-of-sight and the jet axis is smaller than 5 degrees implying that the jet ploughs through the accretion disc in this scenario.Comment: 8 pages, 4 figures, 3 tables, accepted by MNRA

    The population of AM CVn stars from the Sloan Digital Sky Survey

    Get PDF
    The AM Canum Venaticorum stars are rare interacting white dwarf binaries, whose formation and evolution are still poorly known. The Sloan Digital Sky Survey provides, for the first time, a sample of 6 AM CVn stars (out of a total population of 18) that is sufficiently homogeneous that we can start to study the population in some detail. We use the Sloan sample to `calibrate' theoretical population synthesis models for the space density of AM CVn stars. We consider optimistic and pessimistic models for different theoretical formation channels, which yield predictions for the local space density that are more than two orders of magnitude apart. When calibrated with the observations, all models give a local space density of 1-3x10^{-6} pc^{-3}, which is lower than expected. We discuss the implications for the formation of AM CVn stars, and conclude that at least one of the dominant formation channels (the double-degenerate channel) has to be suppressed relative to the optimistic models. In the framework of the current models this suggests that the mass transfer between white dwarfs usually cannot be stabilized. We furthermore discuss evolutionary effects that have so far not been considered in population synthesis models, but which could be of influence for the observed population. We finish by remarking that, with our lower space density, the expected number of Galactic AM CVn stars resolvable by gravitational-wave detectors like LISA should be lowered from current estimates, to about 1,000 for a mission duration of one year.Comment: Accepted to MNRA

    Simulation of the White Dwarf -- White Dwarf galactic background in the LISA data

    Get PDF
    LISA (Laser Interferometer Space Antenna) is a proposed space mission, which will use coherent laser beams exchanged between three remote spacecraft to detect and study low-frequency cosmic gravitational radiation. In the low-part of its frequency band, the LISA strain sensitivity will be dominated by the incoherent superposition of hundreds of millions of gravitational wave signals radiated by inspiraling white-dwarf binaries present in our own galaxy. In order to estimate the magnitude of the LISA response to this background, we have simulated a synthesized population that recently appeared in the literature. We find the amplitude of the galactic white-dwarf binary background in the LISA data to be modulated in time, reaching a minimum equal to about twice that of the LISA noise for a period of about two months around the time when the Sun-LISA direction is roughly oriented towards the Autumn equinox. Since the galactic white-dwarfs background will be observed by LISA not as a stationary but rather as a cyclostationary random process with a period of one year, we summarize the theory of cyclostationary random processes and present the corresponding generalized spectral method needed to characterize such process. We find that, by measuring the generalized spectral components of the white-dwarf background, LISA will be able to infer properties of the distribution of the white-dwarfs binary systems present in our Galaxy.Comment: 14 pages and 6 figures. Submitted to Classical and Quantum Gravity (Proceedings of GWDAW9

    Kinematics of the ultracompact helium accretor AM canum venaticorum

    Get PDF
    We report on the results from a five-night campaign of high-speed spectroscopy of the 17-min binary AM Canum Venaticorum (AM CVn), obtained with the 4.2-m William Herschel Telescope on La Palma. We detect a kinematic feature that appears to be entirely analogous to the 'central spike' known from the long-period, emission-line AM CVn stars GP Com, V396 Hya and SDSS J124058.03-015919.2, which has been attributed to the accreting white dwarf. Assuming that the feature indeed represents the projected velocity amplitude and phase of the accreting white dwarf, we derive a mass ratio q = 0.18 +/- 0.01 for AM CVn. This is significantly higher than the value found in previous, less direct measurements. We discuss the implications for AM CVn's evolutionary history and show that a helium star progenitor scenario is strongly favoured. We further discuss the implications for the interpretation of AM CVn's superhump behaviour, and for the detectability of its gravitational-wave signal with the Laser Interferometer Space Antenna (LISA). In addition, we demonstrate a method for measuring the circularity or eccentricity of AM CVn's accretion disc, using stroboscopic Doppler tomography. We test the predictions of an eccentric, precessing disc that are based on AM CVn's observed superhump behaviour. We limit the effective eccentricity in the outermost part of the disc, where the resonances that drive the eccentricity are thought to occur, to e = 0.04 +/- 0.01, which is smaller than previous models indicated

    On the orbital periods of the AM CVn stars HP Librae and V803 Centauri

    Get PDF
    We analyse high-time-resolution spectroscopy of the AM CVn stars HP Librae and V803 Centauri, taken with the New Technology Telescope (NTT) and the Very Large Telescope (VLT) of the European Southern Observatory, Chile. We present evidence that the literature value for V803 Cen's orbital period is incorrect, based on an observed `S-wave' in the binary's spectrogram. We measure a spectroscopic period P=1596.4+/-1.2s of the S-wave feature, which is significantly shorter than the 1611-second periods found in previous photometric studies. We conclude that the latter period likely represents a `superhump'. If one assumes that our S-wave period is the orbital period, V803 Cen's mass ratio can be expected to be much less extreme than previously thought, at q~0.07 rather than q~0.016. This relaxes the constraints on the masses of the components considerably: the donor star does then not need to be fully degenerate, and the mass of the accreting white dwarf no longer has to be very close to the Chandrasekhar limit. For HP Lib, we similarly measure a spectroscopic period P=1102.8+/-0.2s. This supports the identification of HP Lib's photometric periods found in the literature, and the constraints upon the masses derived from them.Comment: Accepted for publication in MNRA

    Phase-resolved spectroscopy of the helium dwarf nova 'SN 2003aw' in quiescence

    Get PDF
    High time resolution spectroscopic observations of the ultracompact helium dwarf nova 'SN 2003aw' in its quiescent state at V similar to 20.5 reveal its orbital period at 2027.8 +/- 0.5 s or 33.80 min. Together with the photometric 'superhump' period of 2041.5 +/- 0.5 s, this implies a mass ratio q approximate to 0.036. We compare both the average and time-resolved spectra of 'SN 2003aw' and Sloan Digital Sky Survey (SDSS) J124058.03-015919.2. Both show a DB white dwarf spectrum plus an optically thin, helium-dominated accretion disc. 'SN 2003aw' distinguishes itself from the SDSS source by its strong calcium H & K emission lines, suggesting higher abundances of heavy metals than the SDSS source. The silicon and iron emission lines observed in the SDSS source are about twice as strong in 'SN 2003aw'. The peculiar 'double bright spot' accretion disc feature seen in the SDSS source is also present in time-resolved spectra of 'SN 2003aw', albeit much weaker

    Time-resolved X-Shooter spectra and RXTE light curves of the ultra-compact X-ray binary candidate 4U 0614+091

    Full text link
    In this paper we present X-Shooter time resolved spectroscopy and RXTE PCA light curves of the ultra-compact X-ray binary candidate 4U 0614+091. The X-Shooter data are compared to the GMOS data analyzed previously by Nelemans et al. (2004). We confirm the presence of C III and O II emission features at ~ 4650 {\AA} and ~ 5000 {\AA}. The emission lines do not show evident Doppler shifts that could be attributed to the motion of the donor star/hot spot around the center of mass of the binary. We note a weak periodic signal in the red-wing/blue-wing flux ratio of the emission feature at ~ 4650 {\AA}. The signal occurs at P = 30.23 +/- 0.03 min in the X-Shooter and at P = 30.468 +/- 0.006 min in the GMOS spectra when the source was in the low/hard state. Due to aliasing effects the period in the GMOS and X-Shooter data could well be the same. We deem it likely that the orbital period is thus close to 30 min, however, as several photometric periods have been reported for this source in the literature already, further confirmation of the 30 min period is warranted. We compare the surface area of the donor star and the disc of 4U 0614+091 with the surface area of the donor star and the disc in typical hydrogen-rich low-mass X-ray binaries and the class of AM Canum Venaticorum stars and argue that the optical emission in 4U 0614+091 is likely dominated by the disc emission. Additionally, we search for periodic signals in all the publicly available RXTE PCA light curves of 4U 0614+091 which could be associated with the orbital period of this source. A modulation at the orbital period with an amplitude of ~ 10% such as those that have been found in other ultra-compact X-ray binaries (4U 0513-40, 4U 1820-30) is not present in 4U 0614+091.Comment: Accepted for publication in MNRAS, 11 pages, 7 figure

    Photometric Variability in the Faint Sky Variability Survey

    Get PDF
    The Faint Sky Variability Survey (FSVS) is aimed at finding photometric and/or astrometric variable objects between 16th and 24th mag on time-scales between tens of minutes and years with photometric precisions ranging from 3 millimag to 0.2 mag. An area of 23 deg2^2, located at mid and high Galactic latitudes, was covered using the Wide Field Camera (WFC) on the 2.5-m Isaac Newton Telescope (INT) on La Palma. Here we present some preliminary results on the variability of sources in the FSVS.Comment: 4 pages, 3 figures, to appear in 14th European Workshop on White Dwarfs, ASP Conference Series, eds. D. Koester, S. Moehle
    • …
    corecore