58 research outputs found

    Trade-offs between personal immunity and reproduction in the burying beetle, N. vespilloides

    Get PDF
    We know that parental investment and immune investment are costly processes, but it is unclear which trait will be prioritised when both may be required. Here we address this question using the burying beetle Nicrophorus vespilloides, carrion breeders that exhibit biparental care of young. Our results show that immunosuppression occurs during provision of parental care. We measured Phenoloxidase (PO) on Day 1-8 of the breeding bout and results show a clear decrease in PO immediately from presentation of the breeding resource onwards. Having established baseline immune investment during breeding we then manipulated immune investment at different times by applying a wounding challenge. Beetles were wounded prior to and during the parental care period and reproductive investment quantified. Different effects on reproductive output occur depending on the timing of wounding. Challenging the immune system with wounding prior to breeding does not affect reproductive output and subsequent Lifetime Reproductive Success (LRS). LRS is also unaffected by applying an immune elicitor prior to breeding, though different arms of the immune system are up/downregulated, perhaps indicating a trade-off between cellular and humoral immunity. In contrast, wounding during breeding reduces reproductive output and to the greatest extent if the challenge is applied early in the breeding bout. Despite being immunosuppressed, breeding beetles can still respond to wounding by increasing PO, albeit not to pre-breeding levels. This upregulation of PO during breeding may affect parental investment, resulting in a reduction in reproductive output. The potential role of juvenile hormone in controlling this trade-off is discussed

    Nematode neuropeptides as transgenic nematicides

    Get PDF
    NDW was supported by a Bill and Melinda Gates Foundation grand challenge exploration grant. LW was supported by a PhD studentship from the EUPHRESCO Plant Health Fellowship Scheme, and an Eaton Visitorship Award. JJD was supported by a Leverhulme Trust early career fellowship and a Bill and Melinda Gates Foundation grand challenge exploration grant.Plant parasitic nematodes (PPNs) seriously threaten global food security. Conventionally an integrated approach to PPN management has relied heavily on carbamate, organophosphate and fumigant nematicides which are now being withdrawn over environmental health and safety concerns. This progressive withdrawal has left a significant shortcoming in our ability to manage these economically important parasites, and highlights the need for novel and robust control methods. Nematodes can assimilate exogenous peptides through retrograde transport along the chemosensory amphid neurons. Peptides can accumulate within cells of the central nerve ring and can elicit physiological effects when released to interact with receptors on adjoining cells. We have profiled bioactive neuropeptides from the neuropeptide-like protein (NLP) family of PPNs as novel nematicides, and have identified numerous discrete NLPs that negatively impact chemosensation, host invasion and stylet thrusting of the root knot nematode Meloidogyne incognita and the potato cyst nematode Globodera pallida. Transgenic secretion of these peptides from the rhizobacterium, Bacillus subtilis, and the terrestrial microalgae Chlamydomonas reinhardtii reduce tomato infection levels by up to 90% when compared with controls. These data pave the way for the exploitation of nematode neuropeptides as a novel class of plant protective nematicide, using novel non-food transgenic delivery systems which could be deployed on farmer-preferred cultivars

    Squirrelpox virus: assessing prevalence, transmission and environmental degradation

    Get PDF
    Red squirrels (Sciurus vulgaris) declined in Great Britain and Ireland during the last century, due to habitat loss and the introduction of grey squirrels (Sciurus carolinensis), which competitively exclude the red squirrel and act as a reservoir for squirrelpox virus (SQPV). The disease is generally fatal to red squirrels and their ecological replacement by grey squirrels is up to 25 times faster where the virus is present. We aimed to determine: (1) the seropositivity and prevalence of SQPV DNA in the invasive and native species at a regional scale; (2) possible SQPV transmission routes; and, (3) virus degradation rates under differing environmental conditions. Grey (n = 208) and red (n = 40) squirrel blood and tissues were sampled. Enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qPCR) techniques established seropositivity and viral DNA presence, respectively. Overall 8% of squirrels sampled (both species combined) had evidence of SQPV DNA in their tissues and 22% were in possession of antibodies. SQPV prevalence in sampled red squirrels was 2.5%. Viral loads were typically low in grey squirrels by comparison to red squirrels. There was a trend for a greater number of positive samples in spring and summer than in winter. Possible transmission routes were identified through the presence of viral DNA in faeces (red squirrels only), urine and ectoparasites (both species). Virus degradation analyses suggested that, after 30 days of exposure to six combinations of environments, there were more intact virus particles in scabs kept in warm (25°C) and dry conditions than in cooler (5 and 15°C) or wet conditions. We conclude that SQPV is present at low prevalence in invasive grey squirrel populations with a lower prevalence in native red squirrels. Virus transmission could occur through urine especially during warm dry summer conditions but, more notably, via ectoparasites, which are shared by both species

    Assessment and Validation of Globodera pallida as a Novel In Vivo Model for Studying Alzheimer’s Disease

    Get PDF
    Publication history: Accepted - 11 September 2021; Published online - 19 September 2021.Background: Whole transgenic or non-transgenic organism model systems allow the screening of pharmacological compounds for protective actions in Alzheimer’s disease (AD). Aim: In this study, a plant parasitic nematode, Globodera pallida, which assimilates intact peptides from the external environment, was investigated as a new potential non-transgenic model system of AD. Methods: Fresh second-stage juveniles of G. pallida were used to measure their chemosensory, perform immunocytochemistry on their neurological structures, evaluate their survival rate, measure reactive oxygen species, and determine total oxidized glutathione to reduced glutathione ratio (GSSG/GSH) levels, before and after treatment with 100 µM of various amyloid beta (Aβ) peptides (1–40, 1–42, 17–42, 17–40, 1–28, or 1–16). Wild-type N2 C. elegans (strain N2) was cultured on Nematode Growth Medium and directly used, as control, for chemosensory assays. Results: We demonstrated that: (i) G. pallida (unlike Caenorhabditis elegans) assimilates amyloid-β (Aβ) peptides which co-localise with its neurological structures; (ii) pre-treatment with various Aβ isoforms (1–40, 1–42, 17–42, 17–40, 1–28, or 1–16) impairs G. pallida’s chemotaxis to differing extents; (iii) Aβ peptides reduced survival, increased the production of ROS, and increased GSSG/GSH levels in this model; (iv) this unique model can distinguish differences between different treatment concentrations, durations, and modalities, displaying good sensitivity; (v) clinically approved neuroprotective agents were effective in protecting G. pallida from Aβ (1–42) exposure. Taken together, the data indicate that G. pallida is an interesting in vivo model with strong potential for discovery of novel bioactive compounds with anti-AD activity.N.A.A. received a PhD studentship from Shaqra University, KSA and the Saudi Cultural Bureau in London (UKSACB). B.D.G.’s laboratory has received support for AD research from Alzheimer’s Research UK (ARUK-NC2019-NI), the Medical Research Council (MRC) (CIC-CD1718- CIC25), US-Ireland Health and Social Care NI (HSC R&DST/5460/2018) and InvestNI (RD101427 11-01-17-008). This work was also supported by Shaqra University, Saudi Arabi

    RNAi Effector Diversity in Nematodes

    Get PDF
    While RNA interference (RNAi) has been deployed to facilitate gene function studies in diverse helminths, parasitic nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13 nematode species for which genomic or transcriptomic datasets were available, with all outputs subjected to domain-structure verification. Our dataset spanned transcriptomes of Ancylostoma caninum and Oesophagostomum dentatum, and genomes of Trichinella spiralis, Ascaris suum, Brugia malayi, Haemonchus contortus, Meloidogyne hapla, Meloidogyne incognita and Pristionchus pacificus, as well as the Caenorhabditis species C. brenneri, C. briggsae, C. japonica and C. remanei, and revealed that: (i) Most of the C. elegans proteins responsible for uptake and spread of exogenously applied double stranded (ds)RNA are absent from parasitic species, including RNAi-competent plant-nematodes; (ii) The Argonautes (AGOs) responsible for gene expression regulation in C. elegans are broadly conserved, unlike those recruited during the induction of RNAi by exogenous dsRNA; (iii) Secondary Argonautes (SAGOs) are poorly conserved, and the nuclear AGO NRDE-3 was not identified in any parasite; (iv) All five Caenorhabditis spp. possess an expanded RNAi effector repertoire relative to the parasitic nematodes, consistent with the propensity for gene loss in nematode parasites; (v) In spite of the quantitative differences in RNAi effector complements across nematode species, all displayed qualitatively similar coverage of functional protein groups. In summary, we could not identify RNAi effector deficiencies that associate with reduced susceptibility in parasitic nematodes. Indeed, similarities in the RNAi effector complements of RNAi refractory and competent nematode parasites support the broad applicability of this research genetic tool in nematodes

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Data from: Trade-offs between personal immunity and reproduction in the burying beetle, N. vespilloides

    No full text
    We know that parental investment and immune investment are costly processes, but it is unclear which trait will be prioritized when both may be required. Here, we address this question using the burying beetle Nicrophorus vespilloides, carrion breeders that exhibit biparental care of young. Our results show that immunosuppression occurs during provision of parental care. We measured phenoloxidase (PO) on Days 1–8 of the breeding bout and results show a clear decrease in PO immediately from presentation of the breeding resource onward. Having established baseline immune investment during breeding we then manipulated immune investment at different times by applying a wounding challenge. Beetles were wounded prior to and during the parental care period and reproductive investment quantified. Different effects on reproductive output occur depending on the timing of wounding. Challenging the immune system with wounding prior to breeding does not affect reproductive output and subsequent lifetime reproductive success (LRS). LRS is also unaffected by applying an immune elicitor prior to breeding, though different arms of the immune system are up/downregulated, perhaps indicating a trade-off between cellular and humoral immunity. In contrast, wounding during breeding reduces reproductive output and to the greatest extent if the challenge is applied early in the breeding bout. Despite being immunosuppressed, breeding beetles can still respond to wounding by increasing PO, albeit not to prebreeding levels. This upregulation of PO during breeding may affect parental investment, resulting in a reduction in reproductive output. The potential role of juvenile hormone in controlling this trade-off is discussed
    corecore