1,261 research outputs found
Interpretation of vaccine associated neurological adverse events:a methodological and historical review
As a result of significant recent scientific investment, the range of vaccines available for COVID-19 prevention continues to expand and uptake is increasing globally. Although initial trial safety data have been generally reassuring, a number of adverse events, including vaccine induced thrombosis and thrombocytopenia (VITT), have come to light which have the potential to undermine the success of the vaccination program. However, it can be difficult to interpret available data and put these into context and to communicate this effectively. In this review, we discuss contemporary methodologies employed to investigate possible associations between vaccination and adverse neurological outcomes and why determining causality can be challenging. We demonstrate these issues by discussing relevant historical exemplars and explore the relevance for the current pandemic and vaccination program. We also discuss challenges in understanding and communicating such risks to clinicians and the general population within the context of the ‘infodemic’ facilitated by the Internet and other media
Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment
Background: Global but predictable changes impact the DNA methylome as we age, acting as a type of molecular
clock. This clock can be hastened by conditions that decrease lifespan, raising the question of whether it can also
be slowed, for example, by conditions that increase lifespan. Mice are particularly appealing organisms for studies of
mammalian aging; however, epigenetic clocks have thus far been formulated only in humans.
Results: We first examined whether mice and humans experience similar patterns of change in the methylome with
age. We found moderate conservation of CpG sites for which methylation is altered with age, with both species
showing an increase in methylome disorder during aging. Based on this analysis, we formulated an epigenetic-aging
model in mice using the liver methylomes of 107 mice from 0.2 to 26.0 months old. To examine whether epigenetic
aging signatures are slowed by longevity-promoting interventions, we analyzed 28 additional methylomes from mice
subjected to lifespan-extending conditions, including Prop1df/df dwarfism, calorie restriction or dietary rapamycin. We
found that mice treated with these lifespan-extending interventions were significantly younger in epigenetic age than
their untreated, wild-type age-matched controls.
Conclusions: This study shows that lifespan-extending conditions can slow molecular changes associated with an
epigenetic clock in mice livers
Secondary antibody deficiency: a complication of anti-CD20 therapy for neuroinflammation
B-cell depleting anti-CD20 monoclonal antibody therapies are being increasingly used as long-term maintenance therapy for neuroinflammatory disease compared to many non-neurological diseases where they are used as remission-inducing agents. While hypogammaglobulinaemia is known to occur in over half of patients treated with medium to long-term B-cell-depleting therapy (in our cohort IgG 38, IgM 56 and IgA 18%), the risk of infections it poses seems to be under-recognised. Here, we report five cases of serious infections associated with hypogammaglobulinaemia occurring in patients receiving rituximab for neuromyelitis optica spectrum disorders. Sixty-four per cent of the whole cohort of patients studied had hypogammaglobulinemia. We discuss the implications of these cases to the wider use of anti-CD20 therapy in neuroinflammatory disease
[1,2,5]Thiadiazolo[3,4-d]Pyridazine as an Internal Acceptor in the D-A-Ï€-A Organic Sensitizers for Dye-Sensitized Solar Cells
Four new D-A-π-A metal-free organic sensitizers for dye-sensitized solar cells (DSSCs), with [1,2,5]thiadiazolo[3,4-d]pyridazine as internal acceptor, thiophene unit as π-spacer and cyanoacrylate as anchoring electron acceptor, have been synthesized. The donor moiety was introduced into [1,2,5]thiadiazolo[3,4-d]pyridazine by nucleophilic aromatic substitution and Suzuki cross-coupling reactions, allowing design of D-A-π-A sensitizers with the donor attached to the internal heterocyclic acceptor not only by the carbon atom, as it is in a majority of DSSCs, but by the nitrogen atom also. Although low values of power conversion efficiency (PCE) were found, a few important consequences were identified: (i) poor PCE data can be attributed to high electron deficiency of the internal [1,2,5]thiadiazolo[3,4-d]pyridazine acceptor due to lower light harvesting by the dye; (ii) the manner in which the donor was attached to the internal acceptor (by carbon or nitrogen) did not play an essential role in the photovoltaic properties of the dyes; (iii) dyes based on the novel donor 2,3,4,4a,9,9a-hexahydro-1H-1,4-methanocarbazolyl and 9-(p-tolyl)-2,3,4,4a,9,9a-hexahydro-1H- carbazole moieties showed similar photovoltaic properties to dyes based on the well-known 4-(p-tolyl)-1,2,3,3a,4,8b-hexahydrocyclopenta[b]indolyl building block, which opens the door for further optimization potential of new dye families
- …