6 research outputs found

    Fendiline Inhibits Proliferation and Invasion of Pancreatic Cancer Cells by Interfering with ADAM10 Activation and β-catenin Signaling

    No full text
    ADAM10 (A Disintegrin and Metalloprotease Domain 10) affects the pathophysiology of various cancers, and we had shown that inhibition of ADAM10 sensitizes pancreatic cancer cells to gemcitabine. ADAM10 is activated in response to calcium influx, and here we examined if calcium channel blockers (CCB) would impede ADAM10 activation and affect biology of pancreatic cancer cells. We find that the CCB, fendiline, significantly reduces proliferation, migration, invasion, and anchorage independent growth of pancreatic cancer cells. This was associated with ADAM10 inhibition and its localization at the actin-rich membrane protrusions. Further, fendiline-treated cells formed cadherin-catenin positive tight adherens junctions and elicited defective protein trafficking and recycling. Furthermore, the expression of β-catenin target genes, cyclinD1, c-Myc and CD44, were significantly decreased, suggesting that fendiline might prevent cell proliferation and migration by inhibiting ADAM10 function, cadherin proteolysis and stabilization of cadherin-catenin interaction at the plasma membrane. This will subsequently diminish β-catenin intracellular signaling and repress TCF/LEF target gene expression. Supporting this notion, RNAi-directed downregulation of ADAM10 in cancer cells decreased the expression of cyclinD1, c-Myc and CD44. Furthermore, analysis of human pancreatic tumor tissue microarrays and lysates showed elevated levels of ADAM10, suggesting that aberrant activation of ADAM10 plays a fundamental role in growth and metastasis of PDACs and inhibiting this pathway might be a viable strategy to combat PDAC

    Fendiline Inhibits Proliferation and Invasion of Pancreatic Cancer Cells by Interfering with ADAM10 Activation and β-catenin Signaling

    No full text
    ADAM10 (A Disintegrin and Metalloprotease Domain 10) affects the pathophysiology of various cancers, and we had shown that inhibition of ADAM10 sensitizes pancreatic cancer cells to gemcitabine. ADAM10 is activated in response to calcium influx, and here we examined if calcium channel blockers (CCB) would impede ADAM10 activation and affect biology of pancreatic cancer cells. We find that the CCB, fendiline, significantly reduces proliferation, migration, invasion, and anchorage independent growth of pancreatic cancer cells. This was associated with ADAM10 inhibition and its localization at the actin-rich membrane protrusions. Further, fendiline-treated cells formed cadherin-catenin positive tight adherens junctions and elicited defective protein trafficking and recycling. Furthermore, the expression of β-catenin target genes, cyclinD1, c-Myc and CD44, were significantly decreased, suggesting that fendiline might prevent cell proliferation and migration by inhibiting ADAM10 function, cadherin proteolysis and stabilization of cadherin-catenin interaction at the plasma membrane. This will subsequently diminish β-catenin intracellular signaling and repress TCF/LEF target gene expression. Supporting this notion, RNAi-directed downregulation of ADAM10 in cancer cells decreased the expression of cyclinD1, c-Myc and CD44. Furthermore, analysis of human pancreatic tumor tissue microarrays and lysates showed elevated levels of ADAM10, suggesting that aberrant activation of ADAM10 plays a fundamental role in growth and metastasis of PDACs and inhibiting this pathway might be a viable strategy to combat PDAC

    Cardiac-derived extracellular matrix enhances cardiogenic properties of human cardiac progenitor cells

    No full text
    The use of biomaterials has been demonstrated as a viable strategy to promote cell survival and cardiac repair. However, limitations on combinational cell-biomaterial therapies exist, as cellular behavior is influenced by the microenvironment and physical characteristics of the material. Among the different scaffolds employed for cardiac tissue engineering, a myocardial matrix hydrogel has been shown to promote cardiogenesis in murine cardiac progenitor cells (mCPCs) in vitro. In this study, we investigated the influence of the hydrogel on Sca-1-like human fetal and adult CPCs (fCPCs and aCPCs) when encapsulated in three-dimensional (3D) material in vitro. fCPCs encapsulated in the myocardial matrix showed an increase in the gene expression level of cardiac markers GATA-4 and MLC2v and the vascular marker vascular endothelial growth factor receptor 2 (VEGFR2) after 4 days in culture, and a significant increase in GATA-4 up to 1 week. Increased gene expression levels of Nkx2.5, MEF2c, VEGFR2, and CD31 were also observed when aCPCs were cultured in the matrix compared to collagen. Cell survival was sustained in both hydrogels up to 1 week in culture with the myocardial matrix capable of enhancing the expression of the proliferation marker Ki-67 after 4 days in culture. When encapsulated CPCs were treated with H2O2, an improved survival of the cells cultured in the myocardial matrix was observed. Finally, we evaluated the use of the myocardial matrix as hydrogel for in vivo cell transplantation and demonstrated that the gelation properties of the hydrogel are not influenced by the cells. In summary, we showed that the myocardial matrix hydrogel promotes human CPC cardiogenic potential, proliferation, and survival and is a favorable hydrogel for 3D in vitro culture. Furthermore, we demonstrated the in vivo applicability of the matrix as a potential vehicle for cell transplantation

    Cardiac-Derived Extracellular Matrix Enhances Cardiogenic Properties of Human Cardiac Progenitor Cells

    No full text
    The use of biomaterials has been demonstrated as a viable strategy to promote cell survival and cardiac repair. However, limitations on combinational cell-biomaterial therapies exist, as cellular behavior is influenced by the microenvironment and physical characteristics of the material. Among the different scaffolds employed for cardiac tissue engineering, a myocardial matrix hydrogel has been shown to promote cardiogenesis in murine cardiac progenitor cells (mCPCs) in vitro. In this study, we investigated the influence of the hydrogel on Sca-1-like human fetal and adult CPCs (fCPCs and aCPCs) when encapsulated in three-dimensional (3D) material in vitro. fCPCs encapsulated in the myocardial matrix showed an increase in the gene expression level of cardiac markers GATA-4 and MLC2v and the vascular marker vascular endothelial growth factor receptor 2 (VEGFR2) after 4 days in culture, and a significant increase in GATA-4 up to 1 week. Increased gene expression levels of Nkx2.5, MEF2c, VEGFR2, and CD31 were also observed when aCPCs were cultured in the matrix compared to collagen. Cell survival was sustained in both hydrogels up to 1 week in culture with the myocardial matrix capable of enhancing the expression of the proliferation marker Ki-67 after 4 days in culture. When encapsulated CPCs were treated with H2O2, an improved survival of the cells cultured in the myocardial matrix was observed. Finally, we evaluated the use of the myocardial matrix as hydrogel for in vivo cell transplantation and demonstrated that the gelation properties of the hydrogel are not influenced by the cells. In summary, we showed that the myocardial matrix hydrogel promotes human CPC cardiogenic potential, proliferation, and survival and is a favorable hydrogel for 3D in vitro culture. Furthermore, we demonstrated the in vivo applicability of the matrix as a potential vehicle for cell transplantation

    Protein tyrosine kinase regulation by ubiquitination: Critical roles of Cbl-family ubiquitin ligases

    No full text
    corecore