42 research outputs found

    A protein microarray assay for serological determination of antigen-specific antibody responses following Clostridium difficile infection

    Get PDF
    We provide a detailed overview of a novel high-throughput protein microarray assay for the determination of anti-C. difficile antibody levels in human sera and in separate preparations of polyclonal IVIg. The protocol describes the methodological steps involved in sample preparation, printing of arrays, assay procedure and data analysis. In addition, this protocol could be further developed to incorporate diverse clinical samples including plasma and cell culture supernatants. Herein, a combination of isotype (IgG, IgA IgM), subclass (IgG1, IgG2, IgG3, IgG4, IgA1, IgA2), and strain-specific antibodies to highly purified whole C. difficile toxins A and B (toxinotype 0, strain VPI 10463, ribotype 087), toxin B from a C. difficile toxin-B-only expressing strain (CCUG 20309), precursor form of B fragment of binary toxin, pCDTb, ribotype-specific whole surface layer proteins (SLPs; 001, 002, 027) and control proteins (Tetanus toxoid and Candida albicans) were determined by protein microarray. Microarrays were probed with sera from individuals with C. difficile infection (CDI), cystic fibrosis (CF) without diarrhea, healthy controls and individuals pre- and post-IVIg therapy for treatment of CDI, combined immunodeficiency disorder and chronic inflammatory demyelinating polyradiculopathy. Significant differences in toxin neutralization efficacies and multi-isotype specific antibody levels were seen between patient groups, commercial preparations of IVIg and sera before and following IVIg administration. A significant correlation was observed between microarray and enzyme-linked immunosorbent assay (ELISA) for antitoxin IgG levels in serum samples. These results suggest that microarray could become a promising tool for profiling antibody responses to C. difficile antigens in vaccinated or infected humans. With further refinement of antigen panels and a reduction in production costs, it is anticipated that microarray technology may help optimize and select the most clinically useful immunotherapies for C. difficile infection in a patient-specific manner

    The role of indoleamine 2,3-dioxygenase-aryl hydrocarbon receptor pathway in the TLR4-induced tolerogenic phenotype in human DCs

    Get PDF
    A controlled inflammatory response is required for protection against infection, but persistent inflammation causes tissue damage. Dendritic cells (DCs) have a unique capacity to promote both inflammatory and anti-inflammatory processes. One key mechanism involved in DC-mediated immunosuppression is the expression of tryptophan-metabolizing enzyme indoleamine 2,3-dioxygenase (IDO). IDO has been implicated in diverse processes in health and disease but its role in endotoxin tolerance in human DCs is still controversial. Here we investigated the role of IDO in shaping DCs phenotype and function under endotoxin tolerance conditions. Our data show that TLR4 ligation in LPS-primed DCs, induced higher levels of both IDO isoforms together with the transcription factor aryl-hydrocarbon receptor (AhR), compared to unprimed controls. Additionally, LPS conditioning induced an anti-inflammatory phenotype in DCs - with an increase in IL-10 and higher expression of programmed death ligand (PD-L)1 and PD-L2 - which were partially dependent on IDO. Furthermore, we demonstrated that the AhR-IDO pathway was responsible for the preferential activation of noncanonical NF-ÎșB pathway in LPS-conditioned DCs. These data provide new insight into the mechanisms of the TLR4-induced tolerogenic phenotype in human DCs, which can help the better understanding of processes involved in induction and resolution of chronic inflammation and tolerance

    Tobacco smoke and nicotine suppress expression of activating signaling molecules in human dendritic cells

    Get PDF
    Cigarette smoke has significant toxic effects on the immune system, and increases the risk of developing autoimmune diseases; one immunosuppressive effect of cigarette smoke is that it inhibits the T cell-stimulating, immunogenic properties of myeloid dendritic cells (DCs). As the functions of DCs are regulated by intra-cellular signaling pathways, we investigated the effects of cigarette smoke extract (CSE) and nicotine on multiple signalling molecules and other regulatory proteins in human DCs to elucidate the molecular basis of the inhibition of DC maturation and function by CSE and nicotine. Maturation of monocyte-derived DCs was induced with theTLR3-agonist poly I:C or with the TLR4-agonist lipopolysaccharide, in the absence or presence of CSE or nicotine. Reverse-phase protein microarray was used to quantify multiple signaling molecules and other proteins in cell lysates. Particularly in poly I:C-matured DCs, cigarette smoke constituents and nicotine suppressed the expression of signaling molecules associated with DC maturation and T cell stimulation, cell survival and cell migration. In conclusion, constituents of tobacco smoke suppress the immunogenic potential of DCs at the signaling pathway level

    SMAD4 loss enables EGF, TGF\u3b21 and S100A8/A9 induced activation of critical pathways to invasion in human pancreatic adenocarcinoma cells

    Get PDF
    Epidermal Growth Factor (EGF) receptor overexpression, KRAS, TP53, CDKN2A and SMAD4 mutations characterize pancreatic ductal adenocarcinoma. This mutational landscape might influence cancer cells response to EGF, Transforming Growth Factor \u3b21 (TGF\u3b21) and stromal inflammatory calcium binding proteins S100A8/A9. We investigated whether chronic exposure to EGF modifies in a SMAD4-dependent manner pancreatic cancer cell signalling, proliferation and invasion in response to EGF, TGF\u3b21 and S100A8/A9. BxPC3, homozigously deleted (HD) for SMAD4, and BxPC3-SMAD4+ cells were or not stimulated with EGF (100 ng/mL) for three days. EGF pre-treated and non pretreated cells were stimulated with a single dose of EGF (100 ng/mL), TGF\u3b21 (0,02 ng/mL), S100A8/A9 (10 nM). Signalling pathways (Reverse Phase Protein Array and western blot), cell migration (Matrigel) and cell proliferation (XTT) were evaluated. SMAD4 HD constitutively activated ERK and Wnt/\u3b2-catenin, while inhibiting PI3K/AKT pathways. These effects were antagonized by chronic EGF, which increased p-BAD (anti-apoptotic) in response to combined TGF\u3b21 and S100A8/A9 stimulation. SMAD4 HD underlied the inhibition of NF-\u3baB and PI3K/AKT in response to TGF\u3b21 and S100A8/A9, which also induced cell migration. Chronic EGF exposure enhanced cell migration of both BxPC3 and BxPC3-SMAD4+, rendering the cells less sensitive to the other inflammatory stimuli. In conclusion, SMAD4 HD is associated with the constitutive activation of the ERK and Wnt/\u3b2-catenin signalling pathways, and favors the EGF-induced activation of multiple signalling pathways critical to cancer proliferation and invasion. TGF\u3b21 and S100A8/A9 mainly inhibit NF-\u3baB and PI3K/AKT pathways and, when combined, sinergize with EGF in enhancing anti-apoptotic p-BAD in a SMAD4-dependent manner

    Development and validation of protein microarray technology for simultaneous inflammatory mediator detection in human sera

    Get PDF
    Biomarkers, including cytokines, can help in the diagnosis, prognosis, and prediction of treatment response across a wide range of disease settings. Consequently, the recent emergence of protein microarray technology, which is able to quantify a range of inflammatory mediators in a large number of samples simultaneously, has become highly desirable. However, the cost of commercial systems remains somewhat prohibitive. Here we show the development, validation, and implementation of an in-house microarray platform which enables the simultaneous quantitative analysis of multiple protein biomarkers. The accuracy and precision of the in-house microarray system were investigated according to the Food and Drug Administration (FDA) guidelines for pharmacokinetic assay validation. The assay fell within these limits for all but the very low-abundant cytokines, such as interleukin- (IL-) 10. Additionally, there were no significant differences between cytokine detection using our microarray system and the “gold standard” ELISA format. Crucially, future biomarker detection need not be limited to the 16 cytokines shown here but could be expanded as required. In conclusion, we detail a bespoke protein microarray system, utilizing well-validated ELISA reagents, that allows accurate, precise, and reproducible multiplexed biomarker quantification, comparable with commercial ELISA, and allowing customization beyond that of similar commercial microarrays

    Mutations in the binding site of TNFR1 PLAD reduce homologous interactions but can enhance antagonism of wild-type TNFR1 activity

    Get PDF
    The tumour necrosis factor receptor superfamily (TNFRSF) members contain cysteine-rich domains (CRD) in their extracellular regions, and the membrane-distal CRD1 forms homologous interactions in the absence of ligand. The CRD1 is therefore termed a pre-ligand assembly domain (PLAD). The role of PLAD-PLAD interactions in the induction of signalling as a consequence of TNF-TNFR binding led to the development of soluble PLAD domains as antagonists of TNFR activation. In the present study, we generated recombinant wild-type (WT) PLAD of TNFR1 and mutant forms with single alanine substitutions of amino acid residues thought to be critical for the formation of homologous dimers and/or trimers of PLAD (K19A, T31A, D49A and D52A). These mutated PLADs were compared with WT PLAD as antagonists of TNF-induced apoptosis or the activation of inflammatory signalling pathways. Unlike WT PLAD, the mutated PLADs showed little or no homologous interactions, confirming the importance of particular amino acids as contact residues in the PLAD binding region. However, as with WT PLAD, the mutated PLADs functioned as antagonists of TNF-induced TNFR1 activity leading to induction of cell death or NF-ÎșB signalling. Indeed, some of the mutant PLADs, and K19A PLAD in particular, showed enhanced antagonistic activity compared with WT PLAD. This is consistent with the reduced formation of homologous multimers by these PLAD mutants effectively increasing the concentration of PLAD available to bind and antagonize WT TNFR1 when compared to WT PLAD acting as an antagonist. This may have implications for the development of antagonistic PLADs as therapeutic agents

    High prevalence of subclass-specific binding and neutralizing antibodies against Clostridium difficile toxins in adult cystic fibrosis sera: possible mode of immunoprotection against symptomatic C. difficile infection

    Get PDF
    Objectives: Despite multiple risk factors and a high rate of colonization for Clostridium difficile, the occurrence of C. difficile infection in patients with cystic fibrosis is rare. The aim of this study was to compare the prevalence of binding C. difficile toxin-specific immunoglobulin (Ig)A, IgG and anti-toxin neutralizing antibodies in the sera of adults with cystic fibrosis, symptomatic C. difficile infection (without cystic fibrosis) and healthy controls. Methods: Subclass-specific IgA and IgG responses to highly purified whole C. difficile toxins A and B (toxinotype 0, strain VPI 10463, ribotype 087), toxin B from a C. difficile toxin-B only expressing strain (CCUG 20309) and precursor form of B fragment of binary toxin, pCDTb, were determined by protein microarray. Neutralizing antibodies to C. difficile toxins A and B were evaluated using a Caco-2 cell-based neutralization assay. Results: Serum IgA anti-toxin A and B levels and neutralizing antibodies against toxin A were significantly higher in adult cystic fibrosis patients (n=16) compared with healthy controls (n=17) and patients with symptomatic C. difficile infection (n=16); p≀0.05. The same pattern of response prevailed for IgG, except that there was no difference in anti-toxin A IgG levels between the groups. Compared with healthy controls (toxins A and B) and patients with C. difficile infection (toxin A), sera from cystic fibrosis patients exhibited significantly stronger protective anti-toxin neutralizing antibody responses. Conclusion: A superior ability to generate robust humoral immunity to C. difficile toxins in the cystic fibrosis population is likely to confer protection against symptomatic C. difficile infection. This protection may be lost in the post-transplantation setting, where sera-monitoring of anti-C. difficile toxin antibody titers may be of clinical value

    Peripheral killer cells do not differentiate between asthma patients with or without fixed airway obstruction

    Get PDF
    Objective: The three main types of killer cells – CD8+ T cells, NK cells and NKT cells – have been linked to asthma and chronic obstructive pulmonary disease (COPD). However, their role in a small subset of asthma patients displaying fixed airway obstruction (FAO), similar to that seen in COPD, has not been explored. The objective of the present study was to investigate killer cell numbers, phenotype and function in peripheral blood from asthma patients with FAO, asthma patients without FAO, and healthy individuals. Methods: Peripheral CD8+ T cells (CD8+CD3+CD56−), NK cells (CD56+CD3−) and NKT-like cells (CD56+CD3+) of 14 asthma patients with FAO (post-bronchodilator FEV/FVC <0.7, despite clinician-optimised treatment), 7 asthma patients without FAO (post-bronchodilator FEV/FVC ≄0.7), and 9 healthy individuals were studied. Results: No significant differences were seen between the number, receptor expression, MAPK signalling molecule expression, cytotoxic mediator expression, and functional cytotoxicity of peripheral killer cells from asthma patients with FAO, asthma patients without FAO and healthy individuals. Conclusions: Peripheral killer cell numbers or functions do not differentiate between asthma patients with or without fixed airway obstruction

    Clinicopathological and prognostic significance of mitogen-activated protein kinases (MAPK) in breast cancers

    Get PDF
    Background Mitogen-activated protein kinases (MAPKs) are signalling transduction molecules that have different functions and diverse behaviour in cancer. In breast cancer, MAPK is related to oestrogen receptor (ER) and HER2. Methods Protein expression of a large panel of MAPKs (JNK1/2, ERK, p38, C-JUN and ATF2 including phosphorylated forms) were assessed immunohistochemically in a large (n = 1400) and well-characterised breast cancer series prepared as tissue microarray. Moreover, reverse phase protein array was applied to quantify protein expression of MAPKs in six breast cancer cell lines with different phenotypes including HER2-transfected cells. Results MAPKs expression was associated with clinicopathological variables characteristic of good prognosis. These associations were most significant in the whole series and in the ER? subgroup compared to other BC classes. Most of MAPKs showed a positive association with ER, BCL2 and better outcome and were negatively associated with the proliferation marker Ki67 and p53. Association of MAPK with HER2 was mainly seen in the ER- subgroup. Reverse phase protein array confirmed immunohistochemistry results and revealed differential expression of MAPK proteins in ER? and ER- cell lines. Conclusions MAPKs are associated with good prognosis and their expression is mainly related to ER. Studying a large panel rather than individual biomarkers may provide improved understanding of the pathwa

    Patients with TNF Receptor Associated Periodic Syndrome (TRAPS) are hypersensitive to Toll‐like receptor 9 stimulation

    Get PDF
    Tumour necrosis factor receptor‐associated periodic syndrome (TRAPS) is an hereditary autoinflammatory disorder characterised by recurrent episodes of fever and inflammation. It is associated with autosomal dominant mutations in TNFRSF1A, which encodes tumour necrosis factor receptor‐1 (TNFR1). Our aim was to understand the influence of TRAPS mutations on the response to stimulation of the pattern recognition receptor TLR9. Peripheral blood mononuclear cells (PBMCs) and serum were isolated from TRAPS patients and healthy controls: Serum levels of fifteen pro‐inflammatory cytokines were measured to assess the initial inflammatory status. IL‐1ÎČ, IL‐6, IL‐8, IL17, IL22, TNF‐α, VEGF, IFN‐γ, MCP‐1 and TGF‐ÎČ were significantly elevated in TRAPS patients sera, consistent with constitutive inflammation. Stimulation of PBMCs with TLR9 ligand (ODN2006) triggered significantly greater upregulation of pro‐inflammatory signalling intermediates (TRAF3, IRAK2, TOLLIP, TRAF6, pTAK, TAB2, pTAB2, IRF7, RIP, NF‐kB p65, pNF‐ÎșB p65, and MEK1/2) in TRAPS patients’ PBMCs. This upregulation of proinflammatory signalling intermediates and raised serum cytokines occurred despite concurrent anakinra treatment and no overt clinical symptoms at time of sampling. These novel findings further demonstrate the wide‐ranging nature of the dysregulation of innate immune responses underlying the pathology of TRAPS and highlights the need for novel pathway‐specific therapeutic treatments for this disease
    corecore