723 research outputs found

    Individualized Rank Aggregation using Nuclear Norm Regularization

    Full text link
    In recent years rank aggregation has received significant attention from the machine learning community. The goal of such a problem is to combine the (partially revealed) preferences over objects of a large population into a single, relatively consistent ordering of those objects. However, in many cases, we might not want a single ranking and instead opt for individual rankings. We study a version of the problem known as collaborative ranking. In this problem we assume that individual users provide us with pairwise preferences (for example purchasing one item over another). From those preferences we wish to obtain rankings on items that the users have not had an opportunity to explore. The results here have a very interesting connection to the standard matrix completion problem. We provide a theoretical justification for a nuclear norm regularized optimization procedure, and provide high-dimensional scaling results that show how the error in estimating user preferences behaves as the number of observations increase

    Restricted strong convexity and weighted matrix completion: Optimal bounds with noise

    Full text link
    We consider the matrix completion problem under a form of row/column weighted entrywise sampling, including the case of uniform entrywise sampling as a special case. We analyze the associated random observation operator, and prove that with high probability, it satisfies a form of restricted strong convexity with respect to weighted Frobenius norm. Using this property, we obtain as corollaries a number of error bounds on matrix completion in the weighted Frobenius norm under noisy sampling and for both exact and near low-rank matrices. Our results are based on measures of the "spikiness" and "low-rankness" of matrices that are less restrictive than the incoherence conditions imposed in previous work. Our technique involves an MM-estimator that includes controls on both the rank and spikiness of the solution, and we establish non-asymptotic error bounds in weighted Frobenius norm for recovering matrices lying with â„“q\ell_q-"balls" of bounded spikiness. Using information-theoretic methods, we show that no algorithm can achieve better estimates (up to a logarithmic factor) over these same sets, showing that our conditions on matrices and associated rates are essentially optimal

    A simple proof of a theorem on (2n)-weak amenability

    Full text link
    A simple proof of (2n)-weak amenability of the triangular Banach algebra T= [(A A) (0 A)] is given where A is a unital C*-algebra.Comment: 4 page

    Rank Centrality: Ranking from Pair-wise Comparisons

    Full text link
    The question of aggregating pair-wise comparisons to obtain a global ranking over a collection of objects has been of interest for a very long time: be it ranking of online gamers (e.g. MSR's TrueSkill system) and chess players, aggregating social opinions, or deciding which product to sell based on transactions. In most settings, in addition to obtaining a ranking, finding `scores' for each object (e.g. player's rating) is of interest for understanding the intensity of the preferences. In this paper, we propose Rank Centrality, an iterative rank aggregation algorithm for discovering scores for objects (or items) from pair-wise comparisons. The algorithm has a natural random walk interpretation over the graph of objects with an edge present between a pair of objects if they are compared; the score, which we call Rank Centrality, of an object turns out to be its stationary probability under this random walk. To study the efficacy of the algorithm, we consider the popular Bradley-Terry-Luce (BTL) model (equivalent to the Multinomial Logit (MNL) for pair-wise comparisons) in which each object has an associated score which determines the probabilistic outcomes of pair-wise comparisons between objects. In terms of the pair-wise marginal probabilities, which is the main subject of this paper, the MNL model and the BTL model are identical. We bound the finite sample error rates between the scores assumed by the BTL model and those estimated by our algorithm. In particular, the number of samples required to learn the score well with high probability depends on the structure of the comparison graph. When the Laplacian of the comparison graph has a strictly positive spectral gap, e.g. each item is compared to a subset of randomly chosen items, this leads to dependence on the number of samples that is nearly order-optimal.Comment: 45 pages, 3 figure

    Fast global convergence of gradient methods for high-dimensional statistical recovery

    Full text link
    Many statistical MM-estimators are based on convex optimization problems formed by the combination of a data-dependent loss function with a norm-based regularizer. We analyze the convergence rates of projected gradient and composite gradient methods for solving such problems, working within a high-dimensional framework that allows the data dimension \pdim to grow with (and possibly exceed) the sample size \numobs. This high-dimensional structure precludes the usual global assumptions---namely, strong convexity and smoothness conditions---that underlie much of classical optimization analysis. We define appropriately restricted versions of these conditions, and show that they are satisfied with high probability for various statistical models. Under these conditions, our theory guarantees that projected gradient descent has a globally geometric rate of convergence up to the \emph{statistical precision} of the model, meaning the typical distance between the true unknown parameter θ∗\theta^* and an optimal solution θ^\hat{\theta}. This result is substantially sharper than previous convergence results, which yielded sublinear convergence, or linear convergence only up to the noise level. Our analysis applies to a wide range of MM-estimators and statistical models, including sparse linear regression using Lasso (ℓ1\ell_1-regularized regression); group Lasso for block sparsity; log-linear models with regularization; low-rank matrix recovery using nuclear norm regularization; and matrix decomposition. Overall, our analysis reveals interesting connections between statistical precision and computational efficiency in high-dimensional estimation
    • …
    corecore