370 research outputs found

    Superfluid behaviour of a two-dimensional Bose gas

    Full text link
    Two-dimensional (2D) systems play a special role in many-body physics. Because of thermal fluctuations, they cannot undergo a conventional phase transition associated to the breaking of a continuous symmetry. Nevertheless they may exhibit a phase transition to a state with quasi-long range order via the Berezinskii-Kosterlitz-Thouless (BKT) mechanism. A paradigm example is the 2D Bose fluid, such as a liquid helium film, which cannot Bose-condense at non-zero temperature although it becomes superfluid above a critical phase space density. Ultracold atomic gases constitute versatile systems in which the 2D quasi-long range coherence and the microscopic nature of the BKT transition were recently explored. However, a direct observation of superfluidity in terms of frictionless flow is still missing for these systems. Here we probe the superfluidity of a 2D trapped Bose gas with a moving obstacle formed by a micron-sized laser beam. We find a dramatic variation of the response of the fluid, depending on its degree of degeneracy at the obstacle location. In particular we do not observe any significant heating in the central, highly degenerate region if the velocity of the obstacle is below a critical value.Comment: 5 pages, 3 figure

    Determinants of the voltage dependence of G protein modulation within calcium channel β subunits

    Get PDF
    CaVβ subunits of voltage-gated calcium channels contain two conserved domains, a src-homology-3 (SH3) domain and a guanylate kinase-like (GK) domain with an intervening HOOK domain. We have shown in a previous study that, although Gβγ-mediated inhibitory modulation of CaV2.2 channels did not require the interaction of a CaVβ subunit with the CaVα1 subunit, when such interaction was prevented by a mutation in the α1 subunit, G protein modulation could not be removed by a large depolarization and showed voltage-independent properties (Leroy et al., J Neurosci 25:6984–6996, 2005). In this study, we have investigated the ability of mutant and truncated CaVβ subunits to support voltage-dependent G protein modulation in order to determine the minimal domain of the CaVβ subunit that is required for this process. We have coexpressed the CaVβ subunit constructs with CaV2.2 and α2δ-2, studied modulation by the activation of the dopamine D2 receptor, and also examined basal tonic modulation. Our main finding is that the CaVβ subunit GK domains, from either β1b or β2, are sufficient to restore voltage dependence to G protein modulation. We also found that the removal of the variable HOOK region from β2a promotes tonic voltage-dependent G protein modulation. We propose that the absence of the HOOK region enhances Gβγ binding affinity, leading to greater tonic modulation by basal levels of Gβγ. This tonic modulation requires the presence of an SH3 domain, as tonic modulation is not supported by any of the CaVβ subunit GK domains alone

    Localization of the Cochlear Amplifier in Living Sensitive Ears

    Get PDF
    BACKGROUND: To detect soft sounds, the mammalian cochlea increases its sensitivity by amplifying incoming sounds up to one thousand times. Although the cochlear amplifier is thought to be a local cellular process at an area basal to the response peak on the spiral basilar membrane, its location has not been demonstrated experimentally. METHODOLOGY AND PRINCIPAL FINDINGS: Using a sensitive laser interferometer to measure sub-nanometer vibrations at two locations along the basilar membrane in sensitive gerbil cochleae, here we show that the cochlea can boost soft sound-induced vibrations as much as 50 dB/mm at an area proximal to the response peak on the basilar membrane. The observed amplification works maximally at low sound levels and at frequencies immediately below the peak-response frequency of the measured apical location. The amplification decreases more than 65 dB/mm as sound levels increases. CONCLUSIONS AND SIGNIFICANCE: We conclude that the cochlea amplifier resides at a small longitudinal region basal to the response peak in the sensitive cochlea. These data provides critical information for advancing our knowledge on cochlear mechanisms responsible for the remarkable hearing sensitivity, frequency selectivity and dynamic range

    miR-Q: a novel quantitative RT-PCR approach for the expression profiling of small RNA molecules such as miRNAs in a complex sample

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are small endogenous non-coding interfering RNA molecules regarded as major regulators in eukaryotic gene expression. Different methods are employed for miRNA expression profiling. For a better understanding of their role in essential biological processes, convenient methods for differential miRNA expression analysis are required.</p> <p>Results</p> <p>Here, we present the miR-Q assay as a highly sensitive quantitative reverse transcription PCR (qRT-PCR) for expression analysis of small RNAs such as miRNA molecules. It shows a high dynamic range of 6 to 8 orders of magnitude comprising a sensitivity of up to 0.2 fM miRNA, which corresponds to single copies per cell. There is nearly no cross reaction among closely-related miRNA family members, which points to the high specificity of the assays. Using this approach, we quantified the expression of let-7b in different human cell lines as well as miR-145 and miR-21 expression in porcine intestinal samples.</p> <p>Conclusion</p> <p>miR-Q is a cost-effective and highly specific approach, which neither requires the use of fluorochromic probes, nor Locked Nucleic Acid (LNA)-modified oligonucleotides. Moreover, it provides a remarkable increase in specificity and simplified detection of small RNAs.</p

    A critical experimental study of the classical tactile threshold theory

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tactile sense is being used in a variety of applications involving tactile human-machine interfaces. In a significant number of publications the classical threshold concept plays a central role in modelling and explaining psychophysical experimental results such as in stochastic resonance (SR) phenomena. In SR, noise enhances detection of sub-threshold stimuli and the phenomenon is explained stating that the required amplitude to exceed the sensory threshold barrier can be reached by adding noise to a sub-threshold stimulus. We designed an experiment to test the validity of the classical vibrotactile threshold. Using a second choice experiment, we show that individuals can order sensorial events below the level known as the classical threshold. If the observer's sensorial system is not activated by stimuli below the threshold, then a second choice could not be above the chance level. Nevertheless, our experimental results are above that chance level contradicting the definition of the classical tactile threshold.</p> <p>Results</p> <p>We performed a three alternative forced choice detection experiment on 6 subjects asking them first and second choices. In each trial, only one of the intervals contained a stimulus and the others contained only noise. According to the classical threshold assumptions, a correct second choice response corresponds to a guess attempt with a statistical frequency of 50%. Results show an average of 67.35% (STD = 1.41%) for the second choice response that is not explained by the classical threshold definition. Additionally, for low stimulus amplitudes, second choice correct detection is above chance level for any detectability level.</p> <p>Conclusions</p> <p>Using a second choice experiment, we show that individuals can order sensorial events below the level known as a classical threshold. If the observer's sensorial system is not activated by stimuli below the threshold, then a second choice could not be above the chance level. Nevertheless, our experimental results are above that chance level. Therefore, if detection exists below the classical threshold level, then the model to explain the SR phenomenon or any other tactile perception phenomena based on the psychophysical classical threshold is not valid. We conclude that a more suitable model of the tactile sensory system is needed.</p

    Leptospira interrogans Stably Infects Zebrafish Embryos, Altering Phagocyte Behavior and Homing to Specific Tissues

    Get PDF
    Leptospirosis is an extremely widespread zoonotic infection with outcomes ranging from subclinical infection to fatal Weil's syndrome. Despite the global impact of the disease, key aspects of its pathogenesis remain unclear. To examine in detail the earliest steps in the host response to leptospires, we used fluorescently labelled Leptospira interrogans serovar Copenhageni to infect 30 hour post fertilization zebrafish embryos by either the caudal vein or hindbrain ventricle. These embryos have functional innate immunity but have not yet developed an adaptive immune system. Furthermore, they are optically transparent, allowing direct visualization of host–pathogen interactions from the moment of infection. We observed rapid uptake of leptospires by phagocytes, followed by persistent, intracellular infection over the first 48 hours. Phagocytosis of leptospires occasionally resulted in formation of large cellular vesicles consistent with apoptotic bodies. By 24 hours, clusters of infected phagocytes were accumulating lateral to the dorsal artery, presumably in early hematopoietic tissue. Our observations suggest that phagocytosis may be a key defense mechanism in the early stages of leptospirosis, and that phagocytic cells play roles in immunopathogenesis and likely in the dissemination of leptospires to specific target tissues

    Klf15 Is Critical for the Development and Differentiation of Drosophila Nephrocytes

    Get PDF
    Insect nephrocytes are highly endocytic scavenger cells that represent the only invertebrate model for the study of human kidney podocytes. Despite their importance, nephrocyte development is largely uncharacterised. This work tested whether the insect ortholog of mammalian Kidney Krüppel-Like Factor (Klf15), a transcription factor required for mammalian podocyte differentiation, was required for insect nephrocyte development. It was found that expression of Drosophila Klf15 (dKlf15, previously known as Bteb2) was restricted to the only two nephrocyte populations in Drosophila, the garland cells and pericardial nephrocytes. Loss of dKlf15 function led to attrition of both nephrocyte populations and sensitised larvae to the xenotoxin silver nitrate. Although pericardial nephrocytes in dKlf15 loss of function mutants were specified during embryogenesis, they failed to express the slit diaphragm gene sticks and stones and did not form slit diaphragms. Conditional silencing of dKlf15 in adults led to reduced surface expression of the endocytic receptor Amnionless and loss of in vivo scavenger function. Over-expression of dKlf15 increased nephrocyte numbers and rescued age-dependent decline in nephrocyte function. The data place dKlf15 upstream of sns and Amnionless in a nephrocyte-restricted differentiation pathway and suggest dKlf15 expression is both necessary and sufficient to sustain nephrocyte differentiation. These findings explain the physiological relevance of dKlf15 in Drosophila and imply that the role of KLF15 in human podocytes is evolutionarily conserve

    An Allograft Glioma Model Reveals the Dependence of Aquaporin-4 Expression on the Brain Microenvironment

    Get PDF
    Aquaporin-4 (AQP4), the main water channel of the brain, is highly expressed in animal glioma and human glioblastoma in situ. In contrast, most cultivated glioma cell lines don’t express AQP4, and primary cell cultures of human glioblastoma lose it during the first passages. Accordingly, in C6 cells and RG2 cells, two glioma cell lines of the rat, and in SMA mouse glioma cell lines, we found no AQP4 expression. We confirmed an AQP4 loss in primary human glioblastoma cell cultures after a few passages. RG-2 glioma cells if grafted into the brain developed AQP4 expression. This led us consider the possibility of AQP4 expression depends on brain microenvironment. In previous studies, we observed that the typical morphological conformation of AQP4 as orthogonal arrays of particles (OAP) depended on the extracellular matrix component agrin. In this study, we showed for the first time implanted AQP4 negative glioma cells in animal brain or flank to express AQP4 specifically in the intracerebral gliomas but neither in the extracranial nor in the flank gliomas. AQP4 expression in intracerebral gliomas went along with an OAP loss, compared to normal brain tissue. AQP4 staining in vivo normally is polarized in the astrocytic endfoot membranes at the glia limitans superficialis and perivascularis, but in C6 and RG2 tumors the AQP4 staining is redistributed over the whole glioma cell as in human glioblastoma. In contrast, primary rat or mouse astrocytes in culture did not lose their ability to express AQP4, and they were able to form few OAPs

    Zebrafish Kidney Phagocytes Utilize Macropinocytosis and Ca2+-Dependent Endocytic Mechanisms

    Get PDF
    Background: The innate immune response constitutes the first line of defense against invading pathogens and consists of a variety of immune defense mechanisms including active endocytosis by macrophages and granulocytes. Endocytosis can be used as a reliable measure of selective and non-selective mechanisms of antigen uptake in the early phase of an immune response. Numerous assays have been developed to measure this response in a variety of mammalian and fish species. The small size of the zebrafish has prevented the large-scale collection of monocytes/macrophages and granulocytes for these endocytic assays. Methodology/Principal Findings: Pooled zebrafish kidney hematopoietic tissues were used as a source of phagocytic cells for flow-cytometry based endocytic assays. FITC-Dextran, Lucifer Yellow and FITC-Edwardsiella ictaluri were used to evaluate selective and non-selective mechanisms of uptake in zebrafish phagocytes. Conclusions/Significance: Zebrafish kidney phagocytes characterized as monocytes/macrophages, neutrophils and lymphocytes utilize macropinocytosis and Ca 2+-dependant endocytosis mechanisms of antigen uptake. These cells do not appear to utilize a mannose receptor. Heat-killed Edwardsiella ictaluri induces cytoskeletal interactions for internalization in zebrafish kidney monocytes/macrophages and granulocytes. The proposed method is easy to implement and should prove especially useful in immunological, toxicological and epidemiological research
    • …
    corecore