3 research outputs found
Tuning the nuclei-induced spin relaxation of localized electrons by the quantum Zeno and anti-Zeno effects
Quantum measurement back action is fundamentally unavoidable when manipulating electron spins. Here we demonstrate that this back action can be efficiently exploited to tune the spin relaxation of localized electrons induced by the hyperfine interaction. In optical pump-probe experiments, powerful probe pulses suppress the spin relaxation of electrons on Si donors in an InGaAs epilayer due to the quantum Zeno effect. By contrast, an increase of the probe power leads to a speed-up of the spin relaxation for electrons in InGaAs quantum dots due to the quantum anti-Zeno effect. The microscopic description shows that the transition between the two regimes occurs when the spin dephasing time is comparable to the probe pulse repetition period
Extended spin coherence of the zinc-vacancy centers in ZnSe with fast optical access
Qubits based on crystal defect centers have been shown to exhibit long spin coherence times, up to seconds at room temperature. However, they are typically characterized by a comparatively slow initialization timescale. Here, fluorine implantation into ZnSe epilayers is used to induce defect states that are identified as zinc vacancies. We study the carrier spin relaxation in these samples using various pump-probe measurement methods, assessing phenomena such as resonant spin amplification, polarization recovery, and spin inertia in transverse or longitudinal magnetic field. The spin dynamics in isotopically natural ZnSe show a significant influence of the nuclear spin bath. Removing this source of relaxation by using isotopic purification, we isolate the anisotropic exchange interaction as the main spin dephasing mechanism and find spin coherence times of 100 ns at room temperature, with the possibility of fast optical access on the picosecond time scales through excitonic transitions of ZnSe