5 research outputs found

    Contents

    No full text
    Probabilistic graphical models, such as Bayesian networks, allow representing conditional independence information of random variables. These relations are graphically represented by the presence and absence of arcs and edges between vertices. Probabilistic graphical models are nonunique representations of the independence information of a joint probability distribution. However, the concept of Markov equivalence of probabilistic graphical models is able to offer unique representations, called essential graphs. In this survey paper the theory underlying these concepts is reviewed

    Emergence of Linguistic Communication: Studies on Grey Parrots

    No full text
    corecore