22 research outputs found

    Forecasting indicators of the fluid catalytic cracking process of vacuum gas oil with the involvement of different ratios of selective oil extract

    Get PDF

    Calculation Method to Determine the Group Composition of Vacuum Distillate with High Content of Saturated Hydrocarbons

    Get PDF
    Calculation method to determine the group composition of the heavy fraction of vacuum distillate with high content of saturated hydrocarbons, obtained by vacuum distillation of the residue from the West Siberian oil with subsequent hydrotreating, are given in this research. The method is built on the basis of calculation the physico-chemical characteristics and the group composition of vacuum distillate according to the fractional composition and density considering with high content of saturated hydrocarbons in the fraction. Calculation method allows to determine the content of paraffinic, naphthenic, aromatic hydrocarbons and the resins in vacuum distillate with high accuracy and can be used in refineries for rapid determination of the group composition of vacuum distillate

    Research on difference in the group and structural-group composition of vacuum gas oil before and after hydrotreating

    Get PDF

    Thermodynamic Analysis of Catalytic Cracking Reactions as the First Stage in the Development of Mathematical Description

    Get PDF
    In this work thermodynamic analysis of catalytic cracking reaction involving the high molecular weight hydrocarbons was carried out using quantum chemical method of calculation realized in Gaussian software. The method of calculation is DFT (Density Functional Theory), theoretical approximation is B3LYP model, 3-21G basis. The list of catalytic cracking reactions for calculation was prepared on the basis of the theoretical data about catalytic cracking, laboratory and experimental data from the industrial unit. The enthalpy and Gibbs energy values of the main catalytic cracking reactions are presented under the process conditions. The results of this work will be used to develop a kinetic model of catalytic cracking of petroleum feedstock
    corecore