11 research outputs found

    Nicotinic Acetylcholine Receptor-Mediated Protection of the Rat Heart Exposed to Ischemia Reperfusion

    Get PDF
    Abstract Reperfusion injury following acute myocardial infarction is associated with significant morbidity. Activation of neuronal or non-neuronal cholinergic pathways in the heart has been shown to reduce ischemic injury, and this effect has been attributed primarily to muscarinic acetylcholine receptors. In contrast, the role of nicotinic receptors, specifically α-7 subtype (α7nAChR), in the myocardium remains unknown, which offers an opportunity to potentially repurpose several agonists/modulators that are currently under development for neurologic indications. Treatment of ex vivo and in vivo rat models of cardiac ischemia/reperfusion (I/R) with a selective α7nAChR agonist (GTS21) showed significant increases in left ventricular developing pressure and rates of pressure development, without effects on heart rate. These positive functional effects were blocked by co-administration with methyllycaconitine (MLA), a selective antagonist of α7nAChRs. In vivo, delivery of GTS21 at the initiation of reperfusion reduced infarct size by 42% (p < 0.01) and decreased tissue reactive oxygen species (ROS) by 62% (p < 0.01). Flow cytometry of MitoTracker Red-stained mitochondria showed that mitochondrial membrane potential was normalized in mitochondria isolated from GTS21-treated compared with untreated I/R hearts. Intracellular adenosine triphosphate (ATP) concentration in cultured cardiomyocytes exposed to hypoxia/reoxygenation was reduced (p < 0.001), but significantly increased to normoxic levels with GTS21 treatment, which was abrogated by MLA pretreatment. Activation of stress-activated kinases JNK and p38MAPK was significantly reduced by GTS21 in I/R. We conclude that targeting myocardial α7nAChRs in I/R may provide therapeutic benefit by improving cardiac contractile function through a mechanism that preserves mitochondrial membrane potential, maintains intracellular ATP and reduces ROS generation, thus limiting infarct size

    Clotrimazole–cyclodextrin based approach for the management and treatment of <i>Candidiasis</i> – A formulation and chemistry-based evaluation

    No full text
    <p>Clotrimazole (CT) is a poorly soluble antifungal drug that is most commonly employed as a topical treatment in the management of vaginal candidiasis. The present work focuses on a formulation approach to enhance the solubility of CT using cyclodextrin (CD) complexation. A CT–CD complex was prepared by a co-precipitation method. Various characterization techniques such as differential scanning calorimetry, infrared (IR) and X-ray spectroscopy, scanning electron microscopy and nuclear magnetic resonance (NMR) spectroscopy were performed to evaluate the complex formation and to understand the interactions between CT and CD. Computational molecular modeling was performed using the Schrödinger suite and Gaussian 09 program to understand structural conformations of the complex. The phase solubility curve followed an <i>A</i><sub>L</sub>-type curve, indicating formation of a 1:1 complex. Molecular docking studies supported the data obtained through NMR and IR studies. Enthalpy changes confirmed that complexation was an exothermic and enthalpically favorable phenomenon. The CT–CD complexes were formulated in a gel and evaluated for release and antifungal activity. The <i>in vitro</i> release studies performed using gels demonstrated a sustained release of CT from the CT–CD complex with the complex exhibiting improved release relative to the un-complexed CT. Complexed CT–CD exhibited better fungistatic activity toward different <i>Candida</i> species than un-complexed CT.</p
    corecore