4,823 research outputs found

    Fibre-optic delivery of time and frequency to VLBI station

    Full text link
    The quality of Very Long Baseline Interferometry (VLBI) radio observations predominantly relies on precise and ultra-stable time and frequency (T&F) standards, usually hydrogen masers (HM), maintained locally at each VLBI station. Here, we present an operational solution in which the VLBI observations are routinely carried out without use of a local HM, but using remote synchronization via a stabilized, long-distance fibre-optic link. The T&F reference signals, traceable to international atomic timescale (TAI), are delivered to the VLBI station from a dedicated timekeeping laboratory. Moreover, we describe a proof-of-concept experiment where the VLBI station is synchronized to a remote strontium optical lattice clock during the observation.Comment: 8 pages, 8 figures, matches the version published in A&A, section Astronomical instrumentatio

    Tunnelling in quantum superlattices with variable lacunarity

    Full text link
    Quantum fractal superlattices are microelectronic devices consisting of a series of thin layers of two semiconductor materials deposited alternately on each other over a substrate following the rules of construction of a fractal set, here, a symmetrical polyadic Cantor fractal. The scattering properties of electrons in these superlattices may be modeled by using that of quantum particles in piecewise constant potential wells. The twist plots representing the reflection coefficient as function of the lacunarity parameter show the appearance of black curves with perfectly transparent tunnelling which may be classified as vertical, arc, and striation nulls. Approximate analytical formulae for these reflection-less curves are derived using the transfer matrix method. Comparison with the numerical results show their good accuracy.Comment: 12 pages, 3 figure

    GRB 080319B: A Naked-Eye Stellar Blast from the Distant Universe

    Get PDF
    Long duration gamma-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of a massive star. Over the last forty years, our understanding of the GRB phenomenon has progressed dramatically; nevertheless, fortuitous circumstances occasionally arise that provide access to a regime not yet probed. GRB 080319B presented such an opportunity, with extraordinarily bright prompt optical emission that peaked at a visual magnitude of 5.3, making it briefly visible with the naked eye. It was captured in exquisite detail by wide-field telescopes, imaging the burst location from before the time of the explosion. The combination of these unique optical data with simultaneous gamma-ray observations provides powerful diagnostics of the detailed physics of this explosion within seconds of its formation. Here we show that the prompt optical and gamma-ray emissions from this event likely arise from different spectral components within the same physical region located at a large distance from the source, implying an extremely relativistic outflow. The chromatic behaviour of the broadband afterglow is consistent with viewing the GRB down the very narrow inner core of a two-component jet that is expanding into a wind-like environment consistent with the massive star origin of long GRBs. These circumstances can explain the extreme properties of this GRB.Comment: 43 pages, 18 figures, 3 tables, submitted to Nature May 11, 200

    Parallax in “Pi of the Sky” project

    Get PDF
    The main goal of the “Pi of the Sky” project is search for optical transients (OTs) of astrophysical origin, in particular those related to gamma-ray bursts (GRBs). Since March 2011 the project has two running observatories: one in northern Chile and the other one insouthern Spain. This allows for regular observations of a common sky fields, visible from both observatories which are scheduled usually 1–2 h per night. In such a case, the on-line flash recognition algorithm, looking for optical transients, can use parallax information toassure that events observed from both sites have parallax angle smaller than the error of astrometry. On the other hand, the remaining OT candidates can be verified against a hypothesis of being near-Earth objects. This paper presents algorithm using parallax information for identification of near-Earth objects, which might be satellites, or space debris elements. Preliminary results of the algorithm are also presented

    Some Findings Concerning Requirements in Agile Methodologies

    Get PDF
    gile methods have appeared as an attractive alternative to conventional methodologies. These methods try to reduce the time to market and, indirectly, the cost of the product through flexible development and deep customer involvement. The processes related to requirements have been extensively studied in literature, in most cases in the frame of conventional methods. However, conclusions of conventional methodologies could not be necessarily valid for Agile; in some issues, conventional and Agile processes are radically different. As recent surveys report, inadequate project requirements is one of the most conflictive issues in agile approaches and better understanding about this is needed. This paper describes some findings concerning requirements activities in a project developed under an agile methodology. The project intended to evolve an existing product and, therefore, some background information was available. The major difficulties encountered were related to non-functional needs and management of requirements dependencies
    corecore