26,512 research outputs found

    Cationic ordering control of magnetization in Sr2FeMoO6 double perovskite

    Full text link
    The role of the synthesis conditions on the cationic Fe/Mo ordering in Sr2FeMoO6 double perovskite is addressed. It is shown that this ordering can be controlled and varied systematically. The Fe/Mo ordering has a profound impact on the saturation magnetization of the material. Using the appropriate synthesis protocol a record value of 3.7muB/f.u. has been obtained. Mossbauer analysis reveals the existence of two distinguishable Fe sites in agreement with the P4/mmm symmetry and a charge density at the Fe(m+) ions significantly larger than (+3) suggesting a Fe contribution to the spin-down conduction band. The implications of these findings for the synthesis of Sr2FeMoO6 having optimal magnetoresistance response are discussed.Comment: 9 pages, 4 figure

    Heating of the IGM

    Get PDF
    Using the cosmic virial theorem, Press-Schechter analysis and numerical simulations, we compute the expected X-ray background (XRB) from the diffuse IGM with the clumping factor expected from gravitational shock heating. The predicted fluxes and temperatures are excluded from the observed XRB. The predicted clumping can be reduced by entropy injection. The required energy is computed from the two-point correlation function, as well as from Press-Schechter formalisms. The minimal energy injection of 1 keV/nucleon excludes radiative or gravitational heating as a primary energy source. We argue that the intergalactic medium (IGM) must have been heated through violent processes such as massive supernova bursts. If the heating proceeded through supernova explosions, it likely proceeded in bursts which may be observable in high redshift supernova searches. Within our model we reproduce the observed cluster luminosity-temperature relation with energy injection of 1 keV/nucleon if this injection is assumed to be uncorrelated with the local density. These parameters predict that the diffuse IGM soft XRB has a temperature of ~1 keV with a flux near 10 keV/cm^2 s str keV, which may be detectable in the near future.Comment: to appear in ApJ Lett., 11 pages incl 1 figur

    Neutron Fermi Liquids under the presence of a strong magnetic field with effective nuclear forces

    Get PDF
    Landau's Fermi Liquid parameters are calculated for non-superfluid pure neutron matter in the presence of a strong magnetic field at zero temperature. The particle-hole interactions in the system, where a net magnetization may be present, are characterized by these parameters in the framework of a multipolar formalism. We use either zero- or finite-range effective nuclear forces to describe the nuclear interaction. Using the obtained Fermi Liquid parameters, the effect of a strong magnetic field on some bulk magnitudes such as isothermal compressibility and spin susceptibility is also investigated.Comment: 20 pages, 10 figure

    Mechanical oscillations in lasing microspheres

    Get PDF
    We investigate the feasibility of activating coherent mechanical oscillations in lasing microspheres by modulating the laser emission at a mechanical eigenfrequency. To this aim, 1.5% Nd3+:Barium-Titanium-Silicate microspheres with diameters around 50 {\mu}m were used as high quality factor (Q>10^6) whispering gallery mode lasing cavities. We have implemented a pump-and-probe technique in which the pump laser used to excite the Nd3+ ions is focused on a single microsphere with a microscope objective and a probe laser excites a specific optical mode with the evanescent field of a tapered fibre. The studied microspheres show monomode and multi-mode lasing action, which can be modulated in the best case up to 10 MHz. We have optically transduced thermally-activated mechanical eigenmodes appearing in the 50-70 MHz range, the frequency of which decreases with increasing the size of the microspheres. In a pump-and-probe configuration we observed modulation of the probe signal up to the maximum pump modulation frequency of our experimental setup, i.e., 20 MHz. This modulation decreases with frequency and is unrelated to lasing emission, pump scattering or thermal effects. We associate this effect to free-carrier-dispersion induced by multiphoton pump light absorption. On the other hand, we conclude that, in our current experimental conditions, it was not possible to resonantly excite the mechanical modes. Finally, we discuss on how to overcome these limitations by increasing the modulation frequency of the lasing emission and decreasing the frequency of the mechanical eigenmodes displaying a strong degree of optomechanical coupling.Comment: 17 pages, 5 figure

    Mobilizing Science for Climate Change, Agriculture and Food Security: Engaging the Southeast Asian Media

    Get PDF
    In the context of agriculture and food security, science innovations on mitigating and adapting to climate change are available, but these are not well shared with next users and end users (especially farmers) and the public due to inadequate coverage by the mainstream media, a powerful partner in communication and engagement. The urgent need for media practitioners to have an accurate, science-based understanding of climate change and enhance their skills on environmental reporting gave CCAFS-SEA the impetus to conduct a series of inter-Center media seminar-workshops for key Southeast Asian media practitioners in collaboration with NARS and national media partners. Overall, the media seminar-workshop series was participated in by 149 media professionals and 39 government information officers in SEA. The journalists came from print, broadcast (radio-TV) and web-based media outlets. This initiative was a critical first step in implementing CCAFS-SEA’s regional engagement and communication plan, pursued as a CGIAR inter-Center activity in collaboration with NARS and national media partners. The content of the two-day seminar-workshops focused on two major areas: science innovations in climate change, agriculture and food security and communicating climate change. Complementing the plenary sessions was a story ideas marketplace which primarily served as a venue for dialogue among participants and resource persons on possible stories to be developed and released in their respective media outlets. A half-day field tour exposed participants to climate change and agriculture R4D either by a CGIAR Center or a NARS partner and/or climate smart agriculture practices of a farming community. One of the outcomes of the SEA media workshop series in the Philippines is the forging of partnership with a private company, Metro-Pacific Investments Corporation (MPIC), which provided volunteer funding a proposal of the Philippine Agriculture Journalists, Inc. and the Department of Agriculture (DA) to replicate the initiative in strategic regions in the Philippines. This is an unprecedented public-private-civil society partnership in communicating climate change, agriculture and food security in the Philippines. With six media seminar-workshops completed in Cambodia, Lao PDR, Vietnam and the Philippines, the next step for CCAFS-SEA would be to move the engagement process further with partners in the region

    Spatial Interpolants

    Full text link
    We propose Splinter, a new technique for proving properties of heap-manipulating programs that marries (1) a new separation logic-based analysis for heap reasoning with (2) an interpolation-based technique for refining heap-shape invariants with data invariants. Splinter is property directed, precise, and produces counterexample traces when a property does not hold. Using the novel notion of spatial interpolants modulo theories, Splinter can infer complex invariants over general recursive predicates, e.g., of the form all elements in a linked list are even or a binary tree is sorted. Furthermore, we treat interpolation as a black box, which gives us the freedom to encode data manipulation in any suitable theory for a given program (e.g., bit vectors, arrays, or linear arithmetic), so that our technique immediately benefits from any future advances in SMT solving and interpolation.Comment: Short version published in ESOP 201

    Nuclear response functions in homogeneous matter with finite range effective interactions

    Full text link
    The question of nuclear response functions in a homogeneous medium is examined. A general method for calculating response functions in the random phase approximation (RPA) with exchange is presented. The method is applicable for finite-range nuclear interactions. Examples are shown in the case of symmetric nuclear matter described by a Gogny interaction. It is found that the convergence of the results with respect to the multipole truncation is quite fast. Various approximation schemes such as the Landau approximation, or the Landau approximation for the exchange terms only, are discussed in comparison with the exact results.Comment: 9 pages, 9 figure

    Negative Komar Mass of Single Objects in Regular, Asymptotically Flat Spacetimes

    Full text link
    We study two types of axially symmetric, stationary and asymptotically flat spacetimes using highly accurate numerical methods. The one type contains a black hole surrounded by a perfect fluid ring and the other a rigidly rotating disc of dust surrounded by such a ring. Both types of spacetime are regular everywhere (outside of the horizon in the case of the black hole) and fulfil the requirements of the positive energy theorem. However, it is shown that both the black hole and the disc can have negative Komar mass. Furthermore, there exists a continuous transition from discs to black holes even when their Komar masses are negative.Comment: 7 pages, 2 figures, document class iopart. v2: changes made (including title) to coincide with published versio
    corecore