90 research outputs found

    Excessive number of high asperities for sputtered rough films

    Get PDF
    The roughness of solids is crucial for interactions between bodies at short separations due to capillary or van der Waals-Casimir forces and for contact mechanics. Specifically, it is critical for the fabrication and operation of microelectromechanical systems, for which functional materials are deposited using thin film coating technologies. Here, it is demonstrated that the materials deposited by magnetron sputtering or thermally evaporated on a cold Si substrate reveal a significantly larger number of high asperities than that predicted by the normal distribution. Such asperities define the distance between the solids in contact that is the key parameter for many problems. The effect is related to the nonequilibrium deposition conditions and is suppressed if the material is deposited on a hot substrate or annealed. The high asperity tails can be described by the extreme value distribution or in some cases by the exponential distribution

    Circulating endothelial cells in oncology: pitfalls and promises

    Get PDF
    Adequate blood supply is a prerequisite in the pathogenesis of solid malignancies. As a result, depriving a tumour from its oxygen and nutrients, either by preventing the formation of new vessels, or by disrupting vessels already present in the tumour, appears to be an effective treatment modality in oncology. Given the mechanism by which these agents exert their anti-tumour activity together with the crucial role of tumour vasculature in the pathogenesis of tumours, there is a great need for markers properly reflecting its impact. Circulating endothelial cells (CEC), which are thought to derive from damaged vasculature, may be such a marker. Appropriate enumeration of these cells appears to be a technical challenge. Nevertheless, first studies using validated CEC assays have shown that CEC numbers in patients with advanced malignancies are elevated compared to healthy controls making CEC a potential tool for among other establishing prognosis and therapy-induced effects. In this review, we will address the possible clinical applications of CEC detection in oncology, as well as the pitfalls encountered in this process

    NESTOR: A neutrino particle astrophysics underwater laboratory for the Mediterranean

    Get PDF
    Abstract An underwater neutrino astrophysics laboratory, to be located in the international waters off the Southwest of Greece, near the town of Pylos is now under construction. In the last two years a group of physicists from Greece and Russia have carried out two demonstration experiments in 4km deep water, counting muons and verifying the adequacy of the deep sea site. Plans are presented for a 100, 000 m 2 high energy neutrino detector composed of a hexagon of hexagonal towers, with 1176 optical detector units. A progress report is given and the physics potential of a siggle tower with 168 phototubes (currently under construction) is described

    Angiopreventive Efficacy of Pure Flavonolignans from Milk Thistle Extract against Prostate Cancer: Targeting VEGF-VEGFR Signaling

    Get PDF
    The role of neo-angiogenesis in prostate cancer (PCA) growth and metastasis is well established, but the development of effective and non-toxic pharmacological inhibitors of angiogenesis remains an unaccomplished goal. In this regard, targeting aberrant angiogenesis through non-toxic phytochemicals could be an attractive angiopreventive strategy against PCA. The rationale of the present study was to compare the anti-angiogenic potential of four pure diastereoisomeric flavonolignans, namely silybin A, silybin B, isosilybin A and isosilybin B, which we established previously as biologically active constituents in Milk Thistle extract. Results showed that oral feeding of these flavonolignans (50 and 100 mg/kg body weight) effectively inhibit the growth of advanced human PCA DU145 xenografts. Immunohistochemical analyses revealed that these flavonolignans inhibit tumor angiogenesis biomarkers (CD31 and nestin) and signaling molecules regulating angiogenesis (VEGF, VEGFR1, VEGFR2, phospho-Akt and HIF-1α) without adversely affecting the vessel-count in normal tissues (liver, lung, and kidney) of tumor bearing mice. These flavonolignans also inhibited the microvessel sprouting from mouse dorsal aortas ex vivo, and the VEGF-induced cell proliferation, capillary-like tube formation and invasiveness of human umbilical vein endothelial cells (HUVEC) in vitro. Further studies in HUVEC showed that these diastereoisomers target cell cycle, apoptosis and VEGF-induced signaling cascade. Three dimensional growth assay as well as co-culture invasion and in vitro angiogenesis studies (with HUVEC and DU145 cells) suggested the differential effectiveness of the diastereoisomers toward PCA and endothelial cells. Overall, these studies elucidated the comparative anti-angiogenic efficacy of pure flavonolignans from Milk Thistle and suggest their usefulness in PCA angioprevention

    Tumor necrosis is associated with increased alphavbeta3 integrin expression and poor prognosis in nodular cutaneous melanomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor necrosis and apoptotic activity are considered important in cancer progression, but these features have not been much studied in melanomas. Our hypothesis was that rapid growth in cutaneous melanomas of the vertical growth phase might lead to tissue hypoxia, alterations in apoptotic activity and tumor necrosis. We proposed that these tumor characteristics might be associated with changes in expression of cell adhesion proteins leading to increased invasive capacity and reduced patient survival.</p> <p>Methods</p> <p>A well characterized series of nodular melanoma (originally 202 cases) and other benign and malignant melanocytic tumors (109 cases) were examined for the presence of necrosis, apoptotic activity (TUNEL assay), immunohistochemical expression of hypoxia markers (HIF-1 α, CAIX, TNF-α, Apaf-1) and cell adhesion proteins (α<sub>v</sub>β<sub>3 </sub>integrin, CD44/HCAM and osteopontin). We hypothesized that tumor hypoxia and necrosis might be associated with increased invasiveness in melanoma through alterations of tumor cell adhesion proteins.</p> <p>Results</p> <p>Necrosis was present in 29% of nodular melanomas and was associated with increased tumor thickness, tumor ulceration, vascular invasion, higher tumor proliferation and apoptotic index, increased expression of α<sub>v</sub>β<sub>3 </sub>integrin and poor patient outcome by multivariate analysis. Tumor cell apoptosis did also correlate with reduced patient survival. Expression of TNF-α and Apaf-1 was significantly associated with tumor thickness, and osteopontin expression correlated with increased tumor cell proliferation (Ki-67).</p> <p>Conclusion</p> <p>Tumor necrosis and apoptotic activity are important features of melanoma progression and prognosis, at least partly through alterations in cell adhesion molecules such as increased α<sub>v</sub>β<sub>3 </sub>integrin expression, revealing potentially important targets for new therapeutic approaches to be further explored.</p

    Angiotensin II Facilitates Breast Cancer Cell Migration and Metastasis

    Get PDF
    Breast cancer metastasis is a leading cause of death by malignancy in women worldwide. Efforts are being made to further characterize the rate-limiting steps of cancer metastasis, i.e. extravasation of circulating tumor cells and colonization of secondary organs. In this study, we investigated whether angiotensin II, a major vasoactive peptide both produced locally and released in the bloodstream, may trigger activating signals that contribute to cancer cell extravasation and metastasis. We used an experimental in vivo model of cancer metastasis in which bioluminescent breast tumor cells (D3H2LN) were injected intra-cardiacally into nude mice in order to recapitulate the late and essential steps of metastatic dissemination. Real-time intravital imaging studies revealed that angiotensin II accelerates the formation of metastatic foci at secondary sites. Pre-treatment of cancer cells with the peptide increases the number of mice with metastases, as well as the number and size of metastases per mouse. In vitro, angiotensin II contributes to each sequential step of cancer metastasis by promoting cancer cell adhesion to endothelial cells, trans-endothelial migration and tumor cell migration across extracellular matrix. At the molecular level, a total of 102 genes differentially expressed following angiotensin II pre-treatment were identified by comparative DNA microarray. Angiotensin II regulates two groups of connected genes related to its precursor angiotensinogen. Among those, up-regulated MMP2/MMP9 and ICAM1 stand at the crossroad of a network of genes involved in cell adhesion, migration and invasion. Our data suggest that targeting angiotensin II production or action may represent a valuable therapeutic option to prevent metastatic progression of invasive breast tumors

    HIF2alpha cooperates with RAS to promote lung tumorigenesis in mice.

    Get PDF
    Members of the hypoxia-inducible factor (HIF) family of transcription factors regulate the cellular response to hypoxia. In non-small cell lung cancer (NSCLC), high HIF2alpha levels correlate with decreased overall survival, and inhibition of either the protein encoded by the canonical HIF target gene VEGF or VEGFR2 improves clinical outcomes. However, whether HIF2alpha is causal in imparting this poor prognosis is unknown. Here, we generated mice that conditionally express both a nondegradable variant of HIF2alpha and a mutant form of Kras (KrasG12D) that induces lung tumors. Mice expressing both Hif2a and KrasG12D in the lungs developed larger tumors and had an increased tumor burden and decreased survival compared with mice expressing only KrasG12D. Additionally, tumors expressing both KrasG12D and Hif2a were more invasive, demonstrated features of epithelial- mesenchymal transition (EMT), and exhibited increased angiogenesis associated with mobilization of circulating endothelial progenitor cells. These results implicate HIF2alpha causally in the pathogenesis of lung cancer in mice, demonstrate in vivo that HIF2alpha can promote expression of markers of EMT, and define HIF2alpha as a promoter of tumor growth and progression in a solid tumor other than renal cell carcinoma. They further suggest a possible causal relationship between HIF2alpha and prognosis in patients with NSCLC

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link
    • …
    corecore