4 research outputs found

    Development of polyolefin compound and post-polymerization treatments for ground heat exchangers

    Get PDF
    A ground source heat pump (GSHP) system can be used for both cooling and heating modes simultaneously for commercial, industrial and residential buildings virtually at any location with great flexibility to cover a wide range of demands all around the world. Polyethylene (PE) has been used as the main raw material in production of the Ground Heat Exchangers (GHE). This paper briefly reviews the history of polyethylene and development in polymerization process with emphasis on the third-generation bimodal structure. The characteristics of PE pipes used in GSHP systems are discussed. This paper is devoted to a critical review on the attempts in post-polymerization treatments of the PE, and GHEs to improve the performance of the systems. The experimental and simulated comparisons show that the enhancement of the thermal conductivity of the material can reduce significantly the overall borehole thermal resistance

    A Hybrid Method for 3D Reconstruction of MR Images

    No full text
    International audienceThree-dimensional surface reconstruction is a well-known task in medical imaging. In procedures for intervention or radiation treatment planning, the generated models should be accurate and reflect the natural appearance. Traditional methods for this task, such as Marching Cubes, use smoothing post processing to reduce staircase artifacts from mesh generation and exhibit the natural look. However, smoothing algorithms often reduce the quality and degrade the accuracy. Other methods, such as MPU implicits, based on adaptive implicit functions, inherently produce smooth 3D models. However, the integration in the implicit functions of both smoothness and accuracy of the shape approximation may impact the precision of the reconstruction. Having these limitations in mind, we propose a hybrid method for 3D reconstruction of MR images. This method is based on a parallel Marching Cubes algorithm called Flying Edges (FE) and Multi-level Partition of Unity (MPU) implicits. We aim to combine the robustness of the Marching Cubes algorithm with the smooth implicit curve tracking enabled by the use of implicit models in order to provide higher geometry precision. Towards this end, the regions that closely fit to the segmentation data, and thus regions that are not impacted by reconstruction issues, are first extracted from both methods. These regions are then merged and used to reconstruct the final model. Experimental studies were performed on a number of MRI datasets, providing images and error statistics generated from our results. The results obtained show that our method reduces the geometric errors of the reconstructed surfaces when compared to the MPU and FE approaches, producing a more accurate 3D reconstruction

    Reconstruction and topological cleaning of brain MR Images

    No full text
    This paper presents a new approach for topological classification and cleaning of 3D model in medical images that respects a desired topology. First a Marching Cubes-based method is applied on segmented MR Images providing thus a closed surface mesh. A topological structure (Gmap) allowing to control the topology is then generated. Lastly a classification and correction based on specific characteristics relative to volumes, such as the number of faces or exact volume size is done. This topological structure permits to handle and manage topological, geometrical and medical information inside a healthy brain and even for a brain with a tumor or a lesion
    corecore