5 research outputs found

    Streptococcus suis serotyping by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    No full text
    Streptococcus suis, particularly S. suis serotype 2 (SS2), is an important zoonotic pathogen causing meningitis in humans worldwide. Although the proper classification of the causative and pathogenic serotype is salutary for the clinical diagnosis, cross-reactions leading to the indistinguishability of serotypes by the current serotyping methods are significant limitations. In the present study, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of extracted peptides was developed to improve the classification of serotype of S. suis. The peptide mass fingerprint (PMFs) database of S. suis was generated from the whole-cell peptides of 32 reference strains of S. suis isolates obtained from pigs. Thirty-two human S. suis isolates from clinical cases in Thailand were used to validate this alternative serotyping method in direct comparison to the multiplex (m)PCR approach. All reference strains, representing 32 serotypes of S. suis, exhibited their individual PMFs patterns, thus allowing differentiation from one another. Highly pathogenic SS2 and SS14 were clearly differentiated from the otherwise serologically closely related SS1/2 and SS1, respectively. The developed MALDI-TOF-MS serotyping method correctly classified the serotype in 68.8% (22/32) of the same serotype isolates generated from the PMFs database; while the validity for the clinical human isolates was 62.5% (20/32). The agreement between the MALDI-TOF-MS and mPCR serotyping was moderate with a Kappa score of 0.522, considering that mPCR could correctly serotype up to 75%. The present study demonstrated that PMFs from the developed MALDI-TOF-MS-based method could successfully discriminate the previously indistinguishable highly pathogenic SS2 and SS14 from SS1/2 and SS1, respectively. Moreover, this serotyping method distinguished pathogenic SS6, and so is an alternative approach of choice to rapidly and reliably serotype clinically pathogenic S. suis isolates

    Streptococcus suis Serotype 2 Capsule In Vivo

    No full text
    Many Streptococcus suis isolates from porcine endocarditis in slaughterhouses have lost their capsule and are considered avirulent. However, we retrieved capsule- and virulence-recovered S. suis after in vivo passages of a nonencapsulated strain in mice, suggesting that nonencapsulated S. suis are still potentially hazardous for persons in the swine industry

    Isolation of Oral Bacteria, Measurement of the C-Reactive Protein, and Blood Clinical Parameters in Dogs with Oral Tumor

    No full text
    Canine oral cancers have a poor prognosis and are related to chronic inflammation. This may pose a risk of secondary bacterial infection. This study aimed to compare the bacteria isolated from oral swab samples, values of C-reactive proteins (CRPs), and clinical blood profiles of dogs with and without oral mass. A total of 36 dogs were divided in three groups: no oral mass (n = 21), oral mass (n = 8), and metastasis groups (n = 7). Significantly, both the clinical groups (the oral mass group and metastasis group) showed anemia, a decrease in the albumin-to-globulin ratio (AGR), and an increase in the neutrophil-to-lymphocyte ratio (NLR), globulin-to-albumin ratio (GAR), CRP, and CRP-to-albumin ratio (CAR) compared to the normal group. CAR showed an increasing trend in the oral mass and metastasis groups (10 times and 100 times, respectively) compared to the no oral mass group (P<0.001). Neisseria spp. (20.78%) was the main isolated bacteria in all groups. The main genera in the no oral mass group were Neisseria spp. (28.26%), Pasteurella spp. (19.57%), and Staphylococcus spp. (19.57%). Neisseria spp., Staphylococcus spp., Klebsiella spp., and Escherichia spp. were found equally (12.5%) in the oral mass group. Escherichia spp. (26.67%), Pseudomonas spp. (13.33%), and Staphylococcus spp. (13.33%) were the main genera in the metastasis group. Interestingly, Neisseria spp. decreased in the clinical groups (Fisher’s exact = 6.39, P=0.048), and Escherichia spp. increased in the metastasis group (Fisher’s exact = 14.00, P=0.002). The difference of oral bacteria in clinical dogs compared to healthy dogs may be related to microbiome alterations, and both the clinical groups showed the increment of inflammatory biomarkers. This suggested that further studies should be conducted on the correlation between the specific bacteria, CRP, blood clinical parameters, and type of canine oral mass

    Antibacterial Activity of Solanum torvum Leaf Extract and Its Synergistic Effect with Oxacillin against Methicillin-Resistant Staphyloccoci Isolated from Dogs

    No full text
    Methicillin-resistant staphylococci (MRS) have been considered a veterinary and public health threat that needs to be addressed, as they are known to cause serious infections, with limited therapeutic options. Thus, in this study, we aimed to examine the potential antibacterial activity of the leaf extract of Solanum torvum against MRS isolated from clinically healthy dogs. In total, seven mecA-positive Staphylococcus isolates tested in this study were identified using 16S rRNA gene sequencing, and all of them were classified as multidrug-resistant using disk diffusion tests. According to gas chromatography-mass spectrometry analysis, the main phytochemical components found in the leaf extract were hexadecanoic acid and its ethyl ester and 9,12,15-octadecatrienoic acid, ethyl ester, (Z,Z,Z). The minimum inhibitory concentration (MIC) breakpoints for the leaf extract against all tested isolates ranged from 2 to 16 mg/mL, while the MIC breakpoints for oxacillin were from 2 to 512 mg/L. Although varying effects were found, the positive effects of the leaf extract were most evident in combination with oxacillin. These results suggested that S. torvum leaf extract may complement classical antibiotics and may potentially drive the development of an effective therapeutic option for MRS
    corecore