3,936 research outputs found

    Role of the exchange and correlation potential into calculating the x-ray absorption spectra of half-metallic alloys: the case of Mn and Cu K-edge XANES in Cu2_2MnM (M = Al, Sn, In) Heusler alloys

    Get PDF
    This work reports a theoretical study of the x-ray absorption near-edge structure spectra at both the Cu and the Mn K-edge in several Cu2_2MnM (M= Al, Sn and In) Heusler alloys. Our results show that {\it ab-initio} single-channel multiple-scattering calculations are able of reproducing the experimental spectra. Moreover, an extensive discussion is presented concerning the role of the final state potential needed to reproduce the experimental data of these half-metallic alloys. In particular, the effects of the cluster-size and of the exchange and correlation potential needed in reproducing all the experimental XANES features are discussed.Comment: 15 pages, 5 figure

    Quantum Monte Carlo calculation of Compton profiles of solid lithium

    Full text link
    Recent high resolution Compton scattering experiments in lithium have shown significant discrepancies with conventional band theoretical results. We present a pseudopotential quantum Monte Carlo study of electron-electron and electron-ion correlation effects on the momentum distribution of lithium. We compute the correlation correction to the valence Compton profiles obtained within Kohn-Sham density functional theory in the local density approximation and determine that electronic correlation does not account for the discrepancy with the experimental results. Our calculations lead do different conclusions than recent GW studies and indicate that other effects (thermal disorder, core-valence separation etc.) must be invoked to explain the discrepancy with experiments.Comment: submitted to Phys. Rev.

    The Coupled Electronic-Ionic Monte Carlo Simulation Method

    Get PDF
    Quantum Monte Carlo (QMC) methods such as Variational Monte Carlo, Diffusion Monte Carlo or Path Integral Monte Carlo are the most accurate and general methods for computing total electronic energies. We will review methods we have developed to perform QMC for the electrons coupled to a classical Monte Carlo simulation of the ions. In this method, one estimates the Born-Oppenheimer energy E(Z) where Z represents the ionic degrees of freedom. That estimate of the energy is used in a Metropolis simulation of the ionic degrees of freedom. Important aspects of this method are how to deal with the noise, which QMC method and which trial function to use, how to deal with generalized boundary conditions on the wave function so as to reduce the finite size effects. We discuss some advantages of the CEIMC method concerning how the quantum effects of the ionic degrees of freedom can be included and how the boundary conditions can be integrated over. Using these methods, we have performed simulations of liquid H2 and metallic H on a parallel computer.Comment: 27 pages, 10 figure

    Probing polarization states of primordial gravitational waves with CMB anisotropies

    Full text link
    We discuss the polarization signature of primordial gravitational waves imprinted in cosmic microwave background (CMB) anisotropies. The high-energy physics motivated by superstring theory or M-theory generically yield parity violating terms, which may produce a circularly polarized gravitational wave background (GWB) during inflation. In contrast to the standard prediction of inflation with un-polarized GWB, circularly polarized GWB generates non-vanishing TB and EB-mode power spectra of CMB anisotropies. We evaluate the TB and EB-mode power spectra taking into account the secondary effects and investigate the dependence of cosmological parameters. We then discuss current constraints on the circularly polarized GWB from large angular scales (l < 16) of the three year WMAP data. Prospects for future CMB experiments are also investigated based on a Monte Carlo analysis of parameter estimation, showing that the circular polarization degree, varepsilon, which is the asymmetry of the tensor power spectra between right- and left-handed modes normalized by the total amplitude, can be measured down to |varepsilon| 0.35(r/0.05)^{-0.6}.Comment: 28 pages, 9 figures, Accepted for publication in JCA

    Ambulation During Periods of Supersaturation Increase Decompression Stress in Spacewalk Simulations

    Get PDF
    Musculoskeletal activity accelerates inert gas elimination during oxygen breathing prior to decompression (prebreathe), but may also promote bubble formation (nucleation) and increase the risk of decompression sickness (DCS). The timing, pattern and intensity of musculoskeletal activity and the level of tissue supersaturation are likely critical to the net effect. Understanding the relationships is important to evaluate exercise prebreathe protocols and quantify decompression risk in gravity and microgravity environments. The NASA Prebreathe Reduction Program (PRP) combined oxygen prebreathe and exercise preceding a low pressure (4.3 psia; altitude equivalent of 30,300 ft [9,235 m]) simulation exposure of non-ambulatory subjects (a microgravity analog) to produce two protocols now used by astronauts preparing for extravehicular activity. One protocol included both upright cycling and non-cycling exercise (CEVIS: 'cycle ergometer vibration isolation system') and one protocol relied on non-cycling exercise only (ISLE: 'in-suit light exercise'). CEVIS trial data serve as control data for the current study to investigate the influence of ambulation exercise in 1G environments on bubble formation and the subsequent risk of DCS

    Decompression Sickness During Simulated Low Pressure Exposure is Increased with Mild Ambulation Exercise

    Get PDF
    Musculoskeletal activity accelerates inert gas elimination during oxygen breathing prior to decompression (prebreathe), but may also promote bubble formation (nucleation) and increase the risk of decompression sickness (DCS). The timing, pattern and intensity of musculoskeletal activity are likely critical to the net effect. The NASA Prebreathe Reduction Program (PRP) combined oxygen prebreathe and exercise preceding a 4.3 psia exposure in non-ambulatory subjects (a microgravity analog) to produce two protocols now used by astronauts preparing for extravehicular activity - one employing cycling and non-cycling exercise (CEVIS: 'cycle ergometer vibration isolation system') and one relying on non-cycling exercise only (ISLE: 'in-suit light exercise'). Current efforts investigate whether light exercise normal to 1 G environments increases the risk of DCS over microgravity simulation

    Dipole-quadrupole interactions and the nature of phase III of compressed hydrogen

    Full text link
    A new class of strongly infrared active structures is identified for phase III of compressed molecular H2 by constant-pressure ab initio molecular dynamics and density-functional perturbation calculations. These are planar quadrupolar structures obtained as a distortion of low-pressure quadrupolar phases, after they become unstable at about 150 GPa due to a zone-boundary soft phonon. The nature of the II-III transition and the origin of the IR activity are rationalized by means of simple electrostatics, as the onset of a stabilizing dipole-quadrupole interaction.Comment: 4 pages, 3 figures. To appear in Phys. Rev. Let

    Venous Gas Emboli and Ambulation at 4.3 PSIA

    Get PDF
    Ambulation imparts compressive and decompressive forces into the lower body, potentially creating quasi-stable micronuclei that influence the outcome of hypobaric depressurizations
    corecore